Coulomb Potential from Lorentz Invariance in N Dimensions

Although Maxwell theory is O(3,1)-covariant, electrodynamics only transforms invariantly between Lorentz frames for special forms of the field, and the generator of Lorentz transformations is not generally conserved. Bérard, Grandati, Lages, and Mohrbach have studied the O(3) subgroup, for which they found an extension of the rotation generator that satisfies the canonical angular momentum algebra in the presence of certain Maxwell fields, and is conserved by the classical motion. The extended generator depends on the field strength, but not the potential, and so is manifestly gauge invariant. The conditions imposed on the Maxwell field by the algebra lead to a Dirac monopole solution.

In this paper, we study the generalization of the Bérard, Grandati, Lages and Mohrbach construction to the full Lorentz group in N dimensions. The requirements can be maximally satisfied in a three-dimensional subspace of the full Minkowski space; this subspace can be chosen to describe either an O(3)-invariant space sector, or an O(2,1)-invariant restriction of spacetime. The field solution reduces to the Dirac monopole found in the nonrelativistic case when the O(3)-invariant subspace is selected. When an O(2,1)-invariant subspace is chosen, the field strength can be associated with a Coulomb-like potential of the type A μ(x) = n μ/ρ, where ρ = (x μ x μ)1/2, similar to that used by Horwitz and Arshansky to obtain a covariant generalization of the hydrogen-like bound state. In the presence of these fields, which are determined entirely by symmetry considerations, without reference to a source equation, the extended generator is conserved under classical relativistic system evolution.

This is a preview of subscription content, log in to check access.


  1. Dyson F.J. (1990). Am. J. Phys. 58: 209

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Dombey, Am. J. Phys. 59, 1 85 (1991). R. W. Brehme, Am. J. Phys. 59(1), 85 (1991). J. L. Anderson, Am. J. Phys. 59(1), 86 (1991). I. E. Farquhar, Am. J. Phys. 59(1), 87 (1991). A. Vaidya and C. Farina, Phys. Lett. 153A, 265 (1991). R. J. Hughes, Am. J. Phys. 60, 301 (1992).

  3. Shogo Tanimura (1992). Ann. Phys. 220: 229

    MATH  Article  Google Scholar 

  4. Land M.C., Shnerb N., Horwitz L.P. (1995). J. Math. Phys. 36: 3263

    MATH  Article  ADS  MathSciNet  Google Scholar 

  5. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941); Helv. Phys. Acta 14, 588 (1941).

    Google Scholar 

  6. Saad D., Horwitz L.P., Arshansky R.I. (1989). Found. Phys. 19: 1126

    Article  MathSciNet  Google Scholar 

  7. Hojman S.A., Shepley L.C. (1991). J. Math. Phys. 32: 142

    MATH  Article  ADS  MathSciNet  Google Scholar 

  8. Santilli R.M. (1990). Foundations of Theoretical Mechanics I. Springer, Berlin

    Google Scholar 

  9. A. Bérard, J. Lages, and H. Mohrbach, “Restoration of angular Lie algebra symmetries from a covariant Hamiltonian,” arXiv:gr-qc/0110005; Eur. Phys. J. C35, 373 (2004). Alain Bérard, Y. Grandati, and Hervé Mohrbach, “Dirac monopole with Feynman brackets,” arXiv:physics/0004008.

  10. Land M.C. (2005). Found. Phys. 35: 1245

    MATH  Article  MathSciNet  Google Scholar 

  11. L. P. Horwitz and R. Arshansky, J. Math. Phys. 30, 66 (1989); J. Math. Phys. 30, 380 (1989).

  12. Horwitz L.P., Piron C. (1973). Helv. Phys. Acta 48: 316

    Google Scholar 

  13. David Hestenes (1966). Space-Time Algebra. Gordon & Breach, New York

    Google Scholar 

  14. Pavsic, Matej (2001). The Landscape of Theoretical Physics: A Global View. Kluwer Academic, Dordrecht

    Google Scholar 

  15. Land M.C. (2001). Found. Phys. 31: 967

    Article  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Martin Land.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Land, M. Coulomb Potential from Lorentz Invariance in N Dimensions. Found Phys 37, 597–631 (2007).

Download citation


  • covariant Coulomb problem
  • Dirac monopole
  • Lorentz algebra
  • Potential theory