Trouton–Noble Paradox Revisited

An apparent paradox is obtained in all previous treatments of the Trouton–Noble experiment; there is a three-dimensional (3D) torque T in an inertial frame S in which a thin parallel-plate capacitor is moving, but there is no 3D torque T′ in S′, the rest frame of the capacitor. Different explanations are offered for the existence of another 3D torque, which is equal in magnitude but of opposite direction giving that the total 3D torque is zero. In this paper, it is considered that 4D geometric quantities and not the usual 3D quantities are well-defined both theoretically and experimentally in the 4D spacetime. In analogy with the decomposition of the electromagnetic field F (bivector) into two 1-vectors E and B we introduce decomposition of the 4D torque N (bivector) into 1-vectors N s , N t . It is shown that in the frame of “fiducial” observers, in which the observers who measure N s and N t are at rest, and in the standard basis, only the spatial components \(N_{s}^{i}\) and \(N_{t}^{i}\) remain, which can be associated with components of two 3D torques T and T t . In such treatment with 4D geometric quantities the mentioned paradox does not appear. The presented explanation is in complete agreement with the principle of relativity and with the Trouton–Noble experiment without the introduction of any additional torque.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Trouton F.T., Noble H.R. (1903). Philos. Trans. R. Soc. Lond. Ser. A 202: 165

    ADS  Google Scholar 

  2. 2.

    Hayden H.C. (1994). Rev. Sci. Instrum. 65: 788

    Article  ADS  Google Scholar 

  3. 3.

    von Laue M. (1911). Phys. Zeits. 12: 1008

    Google Scholar 

  4. 4.

    Pauli W. (1958). Theory of Relativity. Pergamon, New York

    Google Scholar 

  5. 5.

    Singal A.K. (1993). Am. J. Phys. 61: 428

    Article  ADS  Google Scholar 

  6. 6.

    Teukolsky S.A. (1996). Am. J. Phys. 64: 1104

    Article  ADS  Google Scholar 

  7. 7.

    Jefimenko O.D. (1999). J. Phys. A: Math. Gen. 32: 3755

    MATH  Article  ADS  MathSciNet  Google Scholar 

  8. 8.

    Ivezić T. (2005). Found. Phys. Lett. 18: 401

    Article  MathSciNet  Google Scholar 

  9. 9.

    Ivezić T. (2006). Found. Phys. 36: 1511

    Article  ADS  MathSciNet  Google Scholar 

  10. 10.

    D. Hestenes, Space-Time Algebra(Gordon & Breach, New York, 1966); New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1999), 2nd. edn.; Am. J. Phys. 71, 691 (2003).

  11. 11.

    C. Doran, and A. Lasenby, Geometric algebra for physicists (Cambridge University, Cambridge, 2003).

  12. 12.

    Jefimenko O.D. (1997). Retardation and Relativity. Electret Scientific, Star City

    Google Scholar 

  13. 13.

    Jackson J.D. (2004). Am. J. Phys. 72: 1484

    Article  ADS  Google Scholar 

  14. 14.

    Jackson J.D. (1977). Classical Electrodynamics, 2nd edn. Wiley, New York

    Google Scholar 

  15. 15.

    A. Einstein, Ann. Physik. 17, 891 (1905); in The Principle of Relativity, tr. W. Perrett and G. B. Jeffery, eds. (Dover, New York, 1952).

  16. 16.

    Rohrlich F. (1966). Nuovo Cimento B 45: 76

    Google Scholar 

  17. 17.

    T. Ivezić, Found. Phys. 33, 1339 (2003); Found. Phys. Lett. 18, 301 (2005); Found. Phys. 35, 1585 (2005).

  18. 18.

    Ivezić T. (2002). Found. Phys. Lett. 15: 27 physics/0103026; physics/0101091

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomislav Ivezić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ivezić, T. Trouton–Noble Paradox Revisited. Found Phys 37, 747–760 (2007). https://doi.org/10.1007/s10701-007-9116-x

Download citation

Keywords

  • Trouton–Noble paradox
  • 4D geometric quantities