Solitons as Key Parts to Produce a Universe in the Laboratory

Cosmology is usually understood as an observational science, where experimentation plays no role. It is interesting, nevertheless, to change this perspective addressing the following question: what should we do to create a universe, in a laboratory? It appears, in fact, that this is, in principle, possible according to at least two different paradigms; both allow to circumvent singularity theorems, i.e. the necessity of singularities in the past of inflating domains which have the required properties to generate a universe similar to ours. The first of them is substantially classical, and is built up considering solitons which collide with surrounding topological defects, generating an inflationary domain of space–time. The second is, instead, partly quantum and considers the possibility of tunnelling of past-non-singular regions of spacetime into an inflating universe, following a well-known instanton proposal. We are, here, going to review some of these models, as well as highlight possible extensions, generalizations and the open issues (as for instance the detectability of child universes and the properties of quantum tunnelling processes) that still affect the description of their dynamics. In doing so we will remark how the works on this subject can represent virtual laboratories to test the role that fundamental principles of physics (particularly, the interplay of quantum and general relativistic realms) played in the formation of our universe.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aguirre A., Johnson M.C. (2005) “Dynamics and instability of false vacuum bubbles”. Phys. Rev. D 72: 103525

    Article  ADS  Google Scholar 

  2. 2.

    Aguirre A., Johnson M.C. (2006) “Two tunnels to inflation”. Phys. Rev. D 73: 123529

    Article  ADS  Google Scholar 

  3. 3.

    Ansoldi S. (2002) “WKB metastable quantum states of a de Sitter–Reissner–Nordstroem dust shell”. Class. Quantum Grav. 19: 6321–6344

    MATH  Article  ADS  MathSciNet  Google Scholar 

  4. 4.

    Ansoldi S., Aurilia A., Spallucci E. (2001) “Vacuum bubbles nucleation and dark matter production through gauge symmetry rearrangement". Phys. Rev. D 64: 025008

    Article  ADS  MathSciNet  Google Scholar 

  5. 5.

    S. Ansoldi and L. Sindoni, “Gravitational tunnelling of relativistic shells,” Proceedings of the Sixths International Symposium of Frontiers in Fundamental Physics (Università degli Studi di Udine, Springer, 2006).

  6. 6.

    Aurilia A., Nicolai H., Townsend P.K. (1980) “Hidden constants: The theta parameter of QCD and the cosmological constant of n = 8 supergravity". Nucl. Phys. B 176: 509–522

    Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    Barrabes C., Israel W. (1991) “Thin shells in general relativity and cosmology: the lightlike limit". Phys. Rev. D 43: 1129–1142

    Article  ADS  MathSciNet  Google Scholar 

  8. 8.

    Berezin V.A., Kuzmin V.A., Tkachev I.I. (1987) “Dynamics of bubbles in general relativity". Phys. Rev. D 36: 2919

    Article  ADS  MathSciNet  Google Scholar 

  9. 9.

    Berezin V.A., Kuzmin V.A., Tkachev I.I. (1991). “Black holes initiate false-vacuum decay". Phys. Rev. D 43: R3112–R3116

    Article  ADS  Google Scholar 

  10. 10.

    Blau S.K., Guendelman E.I., Guth A.H. (1987). “Dynamics of false vacuum bubbles". Phys. Rev. D 35: 1747

    Article  ADS  MathSciNet  Google Scholar 

  11. 11.

    Borde A., Trodden M., Vachaspati T. (1999) “Creation and structure of baby universes in monopole collisions". Phys. Rev. D 59: 043513

    Article  ADS  Google Scholar 

  12. 12.

    Brown J.D., Teitelboim C. (1987) “Dynamical neutralization of the cosmological constant". Phys. Lett. B 195: 177–182

    Article  ADS  Google Scholar 

  13. 13.

    Brown J.D., Teitelboim C. (1988) “Neutralization of the cosmological constant by membrane creation". Nucl. Phys. B 297: 787–836

    Article  ADS  MathSciNet  Google Scholar 

  14. 14.

    Callan C.G. Jr., Coleman S. (1977) “Fate of the false vacuum. II. First quantum corrections". Phys. Rev. D 16: 1762–1768

    Article  ADS  Google Scholar 

  15. 15.

    Coleman S. (1977) “Fate of the false vacuum: semiclassical theory". Phys. Rev. D 15: 2929–2936

    Article  ADS  Google Scholar 

  16. 16.

    Coleman S., De Luccia F. (1980) “Gravitational effects on and of vacuum decay". Phys. Rev. D 21: 3305–3315

    Article  ADS  MathSciNet  Google Scholar 

  17. 17.

    Farhi E., Guth A.H., Guven J. (1990) “Is it possible to create a universe in the laboratory by quantum tunneling?”. Nucl. Phys. B 339: 417–490

    Article  ADS  MathSciNet  Google Scholar 

  18. 18.

    Feng J.L., J. March-Russel, Sethi S., Wilczek F. (2001) “Saltatory relaxation of the cosmological constant". Nucl. Phys. B 602: 307–328

    MATH  Article  ADS  Google Scholar 

  19. 19.

    Fischler W., Morgan D., Polchinski J. (1990) “Quantization of false vacuum bubbles: a hamiltonian treatment of gravitational tunneling". Phys. Rev. D 42: 4042–4055

    Article  ADS  MathSciNet  Google Scholar 

  20. 20.

    Fishler W., Morgan D., Polchinski J. (1990). “Quantum mechanics of false vacuum bubbles". Phys. Rev. D 41: 2638–2641

    Article  ADS  Google Scholar 

  21. 21.

    Garriga J., Megevand A. (2004). “Decay of de Sitter vacua by thermal activation". Int. J. Theor. Phys. 43: 883–904

    MATH  Article  Google Scholar 

  22. 22.

    Gomberoff A., Henneaux M., Teitelboim C., Wilczek F. (2004). “Thermal decay of the cosmological constant into black holes". Phys. Rev. D 69: 083520

    Article  ADS  Google Scholar 

  23. 23.

    Guendelman E.I., Portnoy J. (1999). “The universe out of an elementary particle?". Class. Quantum Grav. 16: 3315–3320

    MATH  Article  ADS  MathSciNet  Google Scholar 

  24. 24.

    Guendelman E.I., Kaganovich A.B. (1999) “Dynamical measure and field theory models free of the cosmological constant problem". Phys. Rev. D 60: 065004

    Article  ADS  Google Scholar 

  25. 25.

    Guendelman E.I., Kaganovich A.B., “Fine tuning free paradigm of two measures field theory: k-essence, absence of initial singularity of the curvature and inflation with graceful exit to zero cosmological constant state". Phys. Rev. D (2006), in press.

  26. 26.

    Guendelman E.I., Portnoy J. (2001). “Almost classical creation of a universe". Mod. Phys. Lett. A 16: 1079–1087

    Article  ADS  MathSciNet  Google Scholar 

  27. 27.

    Guendelman E.I., Rabinowitz A. (1991). “Gravitational field of a hedgehog and the evolution of vacuum bubbles". Phys. Rev. D 44: 3152

    Article  ADS  MathSciNet  Google Scholar 

  28. 28.

    Henneaux M., Teitelboim C. (1984). “The cosmological constant as a canonical variable". Phys. Lett. B 143: 415–420

    Article  ADS  MathSciNet  Google Scholar 

  29. 29.

    Hsu S., Zee A. (2006). “Message in the sky". Mod. Phys. Lett. A 21: 1495–1500

    Article  ADS  Google Scholar 

  30. 30.

    Israel W. (1966). “Singular hypersurfaces and thin shells in general relativity". Nuovo Cimento B44: 1

    Google Scholar 

  31. 31.

    Israel W. (1967). “Singular hypersurfaces and thin shells in general relativity (errata)". Nuovo Cimento B48: 463

    Google Scholar 

  32. 32.

    Kodama H., Sasaki M., Sato K. (1982). “Abundance of primordial holes produced by cosmological 1st-order phase transition". Prog. Theor. Phys. 68: 1979–1998

    MATH  Article  ADS  MathSciNet  Google Scholar 

  33. 33.

    Kodama H., Sasaki M., Sato K., Maeda K. (1981). “Fate of wormholes created by 1st order phase-transiitons in the early universe". Prog. Theor. Phys. 66: 2052–2072

    Article  ADS  MathSciNet  Google Scholar 

  34. 34.

    Kolitch S.J., Eardley D.M. (1997). “Quantum decay of domain walls in cosmology. I. Instanton approach". Phys. Rev. D 56: 4651–4662

    Article  ADS  Google Scholar 

  35. 35.

    Kolitch S.J., Eardley D.M. (1997). “Quantum decay of domain walls in cosmology. II. Hamiltonian approach". Phys. Rev. D 56: 4663–4674

    Article  ADS  Google Scholar 

  36. 36.

    arsen K.M., Mallet R.L. (1991). “Radiation and false vacuum bubble dynamics". Phys. Rev. D 44: 333

    Article  ADS  Google Scholar 

  37. 37.

    Lee K., Weinberg E.J. (1987). “Decay of true vacuum in curved spacetime”. Phys. Rev. D 36: 1088–1094

    Article  ADS  Google Scholar 

  38. 38.

    Linde A. (1994). “Monopoles as big as a universe". Phys. Lett. B 327: 208–213

    Article  ADS  Google Scholar 

  39. 39.

    Maeda K., Sato K., Sasaki M., Kodama H. (1982). “Creation of Schwarzschild-de Sitter wormholes by a cosmological first-order phase transition". Phys. Lett. B 108: 98–102

    Article  ADS  MathSciNet  Google Scholar 

  40. 40.

    Mellor F., Moss I. (1989). “Black holes and gravitational instantons". Class. Quantum Grav. 6: 1379–1385

    MATH  Article  ADS  MathSciNet  Google Scholar 

  41. 41.

    Nutku Y., Sheftel M.B., Malykh A.A. (1997). “Gravitational instantons". Class. Quantum Grav. 14: L59–L63

    MATH  Article  ADS  MathSciNet  Google Scholar 

  42. 42.

    Sakai N., Nakao K., Ishihara H., Kobayashi M. (2006). “The universe out of a monopole in the laboratory?". Phys. Rev. D 74: 024026

    Article  ADS  Google Scholar 

  43. 43.

    Sato K. (1981). “Production of magnetized black-hole and wormholes by 1st-order phase transitions in the early universe". Prog. Theor. Phys. 66: 2287–2290

    Article  ADS  Google Scholar 

  44. 44.

    Sato K., Kodama H., Sasaki M., Maeda K. (1982). “Multi-production of universes by first-order phase transition of a vacuum". Phys. Lett. B 108: 103–107

    Article  ADS  MathSciNet  Google Scholar 

  45. 45.

    Sato K., Sasaki M., Kodama H., Maeda K. (1981). “Creation of wormholes by 1st-order phase-transiton of a vacuum in the early universe". Prog. Theor. Phys. 65: 1443–1446

    MATH  Article  ADS  MathSciNet  Google Scholar 

  46. 46.

    Tipler F.J. (1977). “Horizon stability in asymptotically flat spacetimes". Phys. Rev. D 16: 3359–3368

    Article  ADS  MathSciNet  Google Scholar 

  47. 47.

    Vilenkin A. (1994). “Topological inflation". Phys. Rev. Lett. 44: 3137–3140

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Ansoldi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ansoldi, S., Guendelman, E.I. Solitons as Key Parts to Produce a Universe in the Laboratory. Found Phys 37, 712–722 (2007). https://doi.org/10.1007/s10701-007-9113-0

Download citation

  • cosmology
  • baby universes/child universes
  • inflation
  • monopoles
  • solitions and instantons
  • vacuum bubbles