Relativistic Exponential Gravitation and Exponential Potential of Electric Charge

We present theories of gravitation and electric potentials with exponential dependence on the reciprocal distance. In the context of this kind of electric potential we investigate the dynamics of a relativistic electron interacting with a proton.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin, Konigl. Math.-Phys. Tech. 189–196 (1916).

  2. 2.

    R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw-Hill, New York, 1975). See pp. 192–195, especially p. 195.

  3. 3.

    Wald R.M. (1984) General Relativity. Chicago University Press, Chicago, p. 124

    Google Scholar 

  4. 4.

    Foster J., Nightingale J.D. (1995) A Short Course in General Relativity, 2nd edn. Springer, New York, p. 121

    Google Scholar 

  5. 5.

    A. Vankov, “Does light gravitates? (Proposal on a new test of equivalence principle),” Arxiv/0012050 (12.2000).

  6. 6.

    A. Vankov, “Proposal of experimental test of general relativity theory,” Arxiv/0105057 (5.2001).

  7. 7.

    A. Vankov, “On problem of mass origin and self-energy divergence in relativistic mechanics and gravitational physics,” Arxiv:gr-qc/0311063 (20.11.2003).

  8. 8.

    E. A. Milne, Phil. Mag. 34(7), 235–245 (1943). See pp. 239–245.

  9. 9.

    E. A. Milne, Phil. Mag. 34(7), 246–258 (1943). See pp. 246–250.

  10. 10.

    E. A. Milne, Phil. Mag. 34(7), 712–716 (1943).

  11. 11.

    E. A. Milne, Kinematic Relativity (Clarendon Press, Oxford, UK, 1951 ed.) pp. 203–210, 214–220.

  12. 12.

    H. Yılmaz, Nuovo. Cim. B, 10B 79–101 (1972). See p. 87.

  13. 13.

    Yılmaz H. (1973). Nuovo. Cim. Lett. 7: 337–340

    Google Scholar 

  14. 14.

    R. Kiesslinger, Gravitation Theory on the Testbench, Book (Nürnberg, Germany).

  15. 15.

    R. Kiesslinger, Gravitation in the Making (Überlingen, Germany).

  16. 16.

    A. Vankov, “Elimination of high-energy divergence in relativistic Lagrangean formulation of gravitating particle dynamics,” Arxiv:physics/0402117 (23.2.2004).

  17. 17.

    Hatch R.R. (1999). Galilean Electrodynamics 10(4): 69–75

    Google Scholar 

  18. 18.

    D. Turanyanin, J. Theoretics (internet) (2004). See addendum.

  19. 19.

    Majerník V. (1985). Ast. Space Sci. 113: 199–203

    Article  ADS  Google Scholar 

  20. 20.

    Richterek L., Majerník V. (1999). Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Physica 38: 47–58

    Google Scholar 

  21. 21.

    P. Marmet, Einstein’s Theory of Relativity Versus Classical Mechanics (Newton Physics Books, Gloucester, Ontario, Canada, 1997). See Chapter 12.

  22. 22.

    N. Ben-Amots, Relativity, Gravitation, and Relativistic Rotation: Smoothing Some Paradoxes (book to be published).

  23. 23.

    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), pp. 78, 152.

  24. 24.

    Coleman C.J. (1971). J. Phys. A. 4: 611–616

    Article  ADS  Google Scholar 

  25. 25.

    A. Einstein and L. Infeld, The Evolution of Physics (Simon & Schuster, New York, 1938). See pp. 256–258, 260.

  26. 26.

    J. Mehra, Einstein, Hilbert, and the Theory of Gravitation—Historical Origins of General Relativity Theory (Reidel, Dordrecht, 1974) pp. 6–8, 60–62.

  27. 27.

    M. J. Klein, A. J. Kox, J. Renn and R. Schulmann, The Collected Papers of Albert Einstein (Princeton University Press, 1995), Vol. 4: Doc 17 (pp. 486–503) and Doc 28 (pp. 589–597).

  28. 28.

    R. Arnowitt, S. Deser and C. W. Misner, “The dynamics of general relativity,” pp. 227–265 in Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962). See Section 7–7.1: Physical basis of finiteness of self-energy when gravitation is included, pp. 256–257.

  29. 29.

    Noonan T. (1985). Astroph. J. 291: 422–446

    Article  ADS  MathSciNet  Google Scholar 

  30. 30.

    Reut Z. (1986). J. Mech. Appl. Math. 39: 417–423

    MATH  Article  MathSciNet  Google Scholar 

  31. 31.

    Torkelsson U. (1998). Eur. J. Phys. 19: 459–464

    MATH  Article  Google Scholar 

  32. 32.

    Qadir A., Quamar J. (1986). Europhys. Lett. 2: 423–425

    ADS  Google Scholar 

  33. 33.

    Lynden-Bell D., Katz J. (1985). Mon. Not. R. Astron. Soc. 213: 21–25

    ADS  MathSciNet  Google Scholar 

  34. 34.

    Maddox J. (1985). Nature 314: 129

    Article  ADS  Google Scholar 

  35. 35.

    Misner C.W., Thorne K.S., Wheeler J.A. (1973) Gravitation. Freeman, San Francisco p. 604

    Google Scholar 

  36. 36.

    J. D. Bekenstein, Phys. Rev. D 15 1458–1468, (1977), especially p. 1461.

  37. 37.

    L. B. Szabados, “Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article,” in Living Rev. Relativity, 4, lrr-2004-4 (February 2004) (online article), cited on 24 October 2004, http://www.livingreviews.org/lrr-2004-4

  38. 38.

    Moffat J.W. (1979). Phys. Rev. D 19: 3354–3358

    ADS  Google Scholar 

  39. 39.

    Moffat J.W. (1989). Astroph. J. Lett. 347: L59–L60

    Article  ADS  Google Scholar 

  40. 40.

    Cornish N.J., Moffat J.W. (1993). Phys. Rev. D 47: 4421–4424

    Article  ADS  MathSciNet  Google Scholar 

  41. 41.

    Cornish N.J., Moffat J.W. (1994). J. Math. Phys. 35: 6628–6635

    MATH  Article  ADS  MathSciNet  Google Scholar 

  42. 42.

    Cornish N.J., Moffat J.W. (1994). Phys. Lett. B 336: 337–342

    Article  ADS  MathSciNet  Google Scholar 

  43. 43.

    Moffat J.W. (1995). Phys. Lett. B 355: 447–452

    MATH  Article  ADS  MathSciNet  Google Scholar 

  44. 44.

    Moffat J.W. (1995). J. Math. Phys. 36: 3722–3732

    MATH  Article  ADS  MathSciNet  Google Scholar 

  45. 45.

    H. Yılmaz, Nuovo. Cim. B 107B, 941–960 (8.1992). See pp. 944–945, 957.

  46. 46.

    Schiff L.I. (1960). Proc. Nat. Acad. Sci. 46: 871–882

    MATH  Article  ADS  MathSciNet  Google Scholar 

  47. 47.

    L. I. Schiff, “Comparison of Theory and Observation in General Relativity”, in Relativity Theory and Astrophysics: I. Relativity and Cosmology, J. Ehlers, ed. (American Mathematical Society, Providence, RI, 1967), pp. 105–116 (especially p. 106).

  48. 48.

    C. M. Will, “The confrontation between general relativity and experiment,” in Living Rev. Relativity, 4, lrr-2001-4 (May, 2001) (online article). Cited on 19.1.2006: http://www.livingreviews.org/lrr-2001-4 . Updated February 2006: http://www.livingreviews.org/lrr-2006-3 or Arxiv:gr-qc/0510072 (10.2005).

  49. 49.

    Pravdo S.H. et al. (1999). Astron. J. 117: 1616–1633

    Article  ADS  Google Scholar 

  50. 50.

    Jedicke R., Morbidelli A., Spahr T., Petit J.M., Bottke W.F. Jr. (2003). Icarus 161: 17–33

    Article  ADS  Google Scholar 

  51. 51.

    Stuart J.S. (2001). Science 294: 1691–1693

    Article  ADS  Google Scholar 

  52. 52.

    Jedicke R. (1996). Astron. J. 111: 970–982

    Article  ADS  Google Scholar 

  53. 53.

    Boattini A., Carusi A. (1997). Vistas Astr. 41, part 4: 527–541

    Article  ADS  Google Scholar 

  54. 54.

    Helin E.F., Shoemaker E.M. (1979). Icarus 40: 321–328

    Article  ADS  Google Scholar 

  55. 55.

    E. F. Helin and R. S. Dunbar, Vistas Astr. 33, part 1, 21–37 (1990).

  56. 56.

    J. Chiaverini, S. J. Smullin, A. A. Geraci, D. M. Weld and A. Kapitulnik, Phys. Rev. Lett. 90(15), 151101/1-4 (2003).

    Google Scholar 

  57. 57.

    S. J. Smullin, A. A. Geraci, D. M. Weld, J. Chiaverini, S. Holmes-S and A. Kapitulnik, Phys. Rev. D 72(12), 122001-1-20 (2005).

    Google Scholar 

  58. 58.

    A. Schild, “Electromagnetic two-body problem,” Phys. Rev. 131, 2762–2766 (1963). See p. 2762.

    Google Scholar 

  59. 59.

    R. C. Tolman, Relativity, Thermodynamics and Cosmology (Dover, New York, 1987). See Section 83: The Three Crucial Tests of Relativity, pp. 205–213.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Ben-Amots.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ben-Amots, N. Relativistic Exponential Gravitation and Exponential Potential of Electric Charge. Found Phys 37, 773–787 (2007). https://doi.org/10.1007/s10701-007-9112-1

Download citation

Keywords

  • exponential potential
  • sub-Bohr orbital
  • variable rest mass