Foundations of Physics

, Volume 36, Issue 10, pp 1554–1572 | Cite as

Majorana: From Atomic and Molecular, to Nuclear Physics


In the centennial of Ettore Majorana’s birth (1906–1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi’s solution of the celebrated Thomas–Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana’s seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg–Majorana forces) in his later works on theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.


Ettore Majorana Enrico Fermi Thomas-Fermi model exchange interactions atomic and molecular models neutron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Majorana E. (1932). “Teoria relativistica di particelle con momento intrinseco arbitrario”. Nuovo Cimento 9, 335MATHGoogle Scholar
  2. 2.
    Majorana E. (1933). “Über die Kerntheorie”. Z. Physik 82, 137MATHCrossRefADSGoogle Scholar
  3. 3.
    Majorana E. (1937). “Teoria simmetrica dell’elettrone e del positrone”. Nuovo Cimento 14, 171MATHGoogle Scholar
  4. 4.
    Amaldi E., “Ettore Majorana: Man and scientist,” in Strong and Weak Interactions. Present problems, A. Zichichi, ed. (Academic, New York, 1966), p.10Google Scholar
  5. 5.
    P. Sapienza for the NEMO collaboration, “A km3 detector in the Mediterranean: status of NEMO,” Nucl. Phys. B: Proc. Suppl. 145, 331 (2005).Google Scholar
  6. 6.
    A. Bettini, Fisica subnucleare (Università degli Studi di Padova, Padova, 2004), available at Scholar
  7. 7.
    E. Majorana, “Ricerca di un’espressione generale delle correzioni di Rydberg, valevole per atomi neutri o ionizzati positivamente,” Nuovo Cimento 6, xiv (1929).Google Scholar
  8. 8.
    Majorana E. (1931). “Sulla formazione dello ione molecolare di He”. Nuovo Cimento 8, 22MATHCrossRefGoogle Scholar
  9. 9.
    Amaldi E. (1968). “Ricordo di Ettore Majorana”. Giornale di Fisica 9, 300Google Scholar
  10. 10.
    B. Preziosi, ed., Ettore Majorana: Lezioni all’Università di Napoli (Bibliopolis, Napoli, 1987).Google Scholar
  11. 11.
    Bonolis L. (2002). Majorana, il genio scomparso. Le Scienze, MilanoGoogle Scholar
  12. 12.
    E. Recami, “Catalog of the scientific manuscripts left by Ettore Majorana (with a recollection of E. Majorana, sixty years after his disappearance),” Quaderni di Storia della Fisica del Giornale di Fisica 5, 19 (1999), also available as preprint arXiv:physics/9810023.Google Scholar
  13. 13.
    Thomas L.H. (1926). “The calculation of atomic fields” . Proc. Camb. Philos. Soc. Mathe. Phys. Sci. 23, 542Google Scholar
  14. 14.
    Fermi E. (1927). “Un metodo statistico per la determinazione di alcune proprietà dell’atomo”. Rendiconti dell’Accademia Nazionale dei Lincei 6, 602Google Scholar
  15. 15.
    Fermi E. (1928). “Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente”. Z. Physik 48, 73MATHCrossRefADSGoogle Scholar
  16. 16.
    March N.H. (1975). Self-Consistent Fields in Atoms. Pergamon, OxfordGoogle Scholar
  17. 17.
    Pucci R. (1986). “Nuove metodologie comuni tra fisica e chimica teorica: la teoria del funzionale della densità”. Giornale di Fisica 27, 256Google Scholar
  18. 18.
    Sommerfeld A. (1932). “Integrazione asintotica dell’equazione differenziale di Thomas-Fermi”. Rend. R. Accademia dei Lincei 15, 293Google Scholar
  19. 19.
    Esposito S. (2002). “Majorana solution of the Thomas-Fermi equation”. Am. J. Phys. 70, 852CrossRefADSGoogle Scholar
  20. 20.
    Esposito S., Majorana E. Jr., van der Merwe A., Recami E. (2003). Ettore Majorana: Notes on Theoretical Physics. Kluwer Academic, New YorkMATHGoogle Scholar
  21. 21.
    Di Grezia E., Esposito S. (2004). “Fermi, Majorana and the statistical model of atoms”. Found. Phys. 34: 1431MATHCrossRefADSGoogle Scholar
  22. 22.
    F. Guerra and N. Robotti, “A forgotten publication of Ettore Majorana on the improvement of the Thomas-Fermi statistical model,” (2005), preprint arXiv:physics/0511222.Google Scholar
  23. 23.
    E. Fermi, “Sui momenti magnetici dei nuclei atomici,” Mem. Acad. Italia (Fis.) I, 139 (1930).Google Scholar
  24. 24.
    S. Esposito, “Again on Majorana and the Thomas-Fermi model: a comment to arXiv:physics/0511222,” (2005), preprint arXiv:physics/0512259.Google Scholar
  25. 25.
    Flügge S. (1974). Practical Quantum Mechanics. Springer, New YorkMATHGoogle Scholar
  26. 26.
    Fermi E., Amaldi E. (1934). “Le orbite ∞ s degli elementi”. Mem. Accad. Italia (Fis.) 6, 119MATHGoogle Scholar
  27. 27.
    Pucci R., March N.H. (1982). “Some moments of radial electron density in closed-shell atoms and their atomic scattering factors”. J. Chem. Phys. 76: 4089CrossRefADSGoogle Scholar
  28. 28.
    Heitler W., London F. (1927). “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik”. Z. Physik 44, 455MATHCrossRefADSGoogle Scholar
  29. 29.
    Hund F. (1928). “Zur Deutung der Molekenspektren. IV”. Z. Physik 51, 759MATHCrossRefADSGoogle Scholar
  30. 30.
    Mulliken R.S., (1928). “The assignment of quantum numbers for electrons in molecules. I”. Phys. Rev. 32, 186MATHCrossRefADSGoogle Scholar
  31. 31.
    Mulliken R.S. (1928). “The assignment of quantum numbers for electrons in molecules. II. Correlation of molecular and atomic electron states”. Phys. Rev. 32, 761MATHCrossRefADSGoogle Scholar
  32. 32.
    Hückel E. (1930). “Zur Quantentheorie der Doppelbindung”. Z. Physik 60, 423MATHCrossRefADSGoogle Scholar
  33. 33.
    Coulson C.A. (1952). Valence. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Hund F. (1927). “Symmetriecharaktere von Termen bei Systemen mit gleichen Partikeln in der Quantenmechanik”. Z. Physik 43, 788MATHCrossRefADSGoogle Scholar
  35. 35.
    Wang S.C. (1928). “The problem of the normal hydrogen molecule in the new quantum mechanics”. Phys. Rev. 31, 579MATHCrossRefADSGoogle Scholar
  36. 36.
    Pauling L. (1933). “The normal state of the helium molecule-ion \({\rm He}_2^+\) and \({\rm He}_2^{++}\)”. J. Chem. Phys. 1, 56CrossRefADSGoogle Scholar
  37. 37.
    Pauling L., Bright Wilson E. (1935). Introduction to Quantum Mechanics with Applications to Chemistry. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Ackermann J., Hogreve H. (1991). “Adiabatic calculations and properties of the He2+ molecular ion”. Chem. Phys. 157, 75CrossRefGoogle Scholar
  39. 39.
    Reagan P.N., Browne J.C., Matsen F.A. (1963). “Dissociation energy of \({\rm He}_2^+(^2 \Sigma_u^+ )\)”. Phys. Rev. 132, 304CrossRefADSGoogle Scholar
  40. 40.
    Coman L., Guna M., Simons L., Hardy K.A. (1999). “First measurement of the rotational constants for the homonuclear molecular ion \({\rm He}_2^+\)”. Phys. Rev. Lett. 83: 2715CrossRefADSGoogle Scholar
  41. 41.
    Pauling L., Brockway L.O., Beach J.Y. (1935). “The dependence of interatomic distance on single bond-double bond resonance”. J. Am. Chem. Soc. 57: 2705CrossRefGoogle Scholar
  42. 42.
    Rutherford E. (1963). Collected Papers. Interscience: Wiley, New YorkGoogle Scholar
  43. 43.
    Bothe W., Becker H. (1930). “Künstliche Erregung von Kern-γ-Strahlen”. Z. Physik 66, 289CrossRefADSGoogle Scholar
  44. 44.
    Joliot-Curie I., Joliot F. (1932). “Èmission de protons de grande vitesse par les substances hydrogénées sous l’influence des rayons γ trés pénétrants”. Compt. Rend. 194, 273Google Scholar
  45. 45.
    Joliot-Curie I., Joliot F. (1932). “Projections d’atomes par les rayons trés pénétrants excités dans les noyaux légers”. Compt. Rend. 194, 876Google Scholar
  46. 46.
    Segrè E. (1970). Enrico Fermi, Physicist. The University of Chicago Press, ChicagoGoogle Scholar
  47. 47.
    Chadwick J. (1932). “Possible existence of a neutron”. Nature 129, 312ADSGoogle Scholar
  48. 48.
    Heisenberg W. (1932). “Über den Bau der Atomkerne”. Z. Physik. 77, 1MATHMathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Heisenberg W. (1933). “Über den Bau der Atomkerne. II”. Z. Physik. 78, 156MATHCrossRefADSGoogle Scholar
  50. 50.
    Heisenberg W. (1933). “Über den Bau der Atomkerne. III”. Z. Physik. 80, 587MATHCrossRefADSGoogle Scholar
  51. 51.
    Blatt J.M., Weisskopf V.F. (1952). Theoretical Nuclear Physics. Wiley, New YorkMATHGoogle Scholar
  52. 52.
    Slater J.C. (1963). Quantum theory of molecules and solids, Vol 1. McGraw-Hill, New YorkMATHGoogle Scholar
  53. 53.
    Dirac P.A.M. (1924). “Discussion of the infinite distribution of electrons in the theory of the positron”. Proc. Camb. Philos. Soc. Mathe. Phys. Sci. 30, 150CrossRefGoogle Scholar
  54. 54.
    Bransden B.H., Joachain C.J. (2003) Physics of Atoms and Molecules, 2nd edn. Prentice Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversità di Catania, and CNISM, UdR Catania, and INFNCataniaItaly

Personalised recommendations