Foundations of Physics

, Volume 36, Issue 3, pp 407–426 | Cite as

Time-Reversal, Irreversibility and Arrow of Time in Quantum Mechanics

Article

Abstract

The aim of this paper is to analyze time-asymmetric quantum mechanics with respect of its validity as a non time-reversal invariant, time-asymmetric theory as well as of its ability to determine an arrow of time.

Keywords

irreversibility arrow of time rigged Hilbert spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Brush, The Kind of Motion We Call Heat (North Holland, Amsterdam, 1976).Google Scholar
  2. 2.
    Cohen-Tannoudji C., Diou B., Laloe F. (1977). Quantum Mechanics. Wiley, New YorkGoogle Scholar
  3. 3.
    Lee T.D. (1981). Particle Physics and Field Theory. Harwood, New YorkGoogle Scholar
  4. 4.
    A. Bohm and R. Scurek, “The phenomenological preparation–registration arrow of time and its semigroup representation in the RHS Quantum Theory” in Trends in Quantum Mechanics, H. D. Doebner, S. T. Ali, M. Keyl, and R. F. Werner eds., (World Scientific, Singapore-London, 2000); A. Bohm, M. Loewe, and B. Van de Ven, “Time asymmetric quantum theory—I. Modifying an axiom of quantum physics” Fortschr. Phys. 51, 551 (2003); A. Bohm, I. Antoniou, and P. Kielanowski, “A quantum mechanical arrow of time and the semigroup time evolution of Gamow vectors” \ J. Math. Phys. 36, 2593 (1994); A. Bohm, M. Gadella, and M. J. Mithaiwala, “Time asymmetric Quantum Theory: foundations and applications” in The Physics of Communication, Proceedings of the XXII Solvay Conference on Physics (World Scientific, Singapore, 2003), p. 117; R. C. Bishop, A. Bohm, and M. Gadella, “Irreversibility in Quantum Mechanics” Discrete Dynamics in Nature and Society 2004, 75–83 (2004).Google Scholar
  5. 5.
    I. Prigogine, From Being to Becoming. Time and Complexity in the Physical Sciences (Freeman, New York, 1980); T. Petroski and I. Prigogine, “Alternative formulation of classical and quantum dynamics for non-integrable systems” Physica A 175, 146 (1991); T. Petroski, I. Prigogine, and S. Tasaki, “Quantum theory of non-integrable systems” Physica A 173, 175 (1991).Google Scholar
  6. 6.
    Antoniou I., Prigogine I. (1993). “Intrinsic irreversibility and integrability of dynamics”. Physica A 192, 443CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Petrosky T., Prigogine I. (1997). “The extension of classical dynamics for unstable Hamiltonian systems”. Comp. Math. Appl. 34, 1CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Albert D. (2000). Time and Chance. Harvard, Cambridge (USA)MATHGoogle Scholar
  9. 9.
    Arntzenius F. (2004). “Time reversal operations, representations of the Lorentz group, and the direction of time”. Stud. Hist. Phil. Mod. Phys 35, 31CrossRefMathSciNetGoogle Scholar
  10. 10.
    Castagnino M., Lara L., Lombardi O. (2003). “The cosmological origin of time asymmetry”. Class. Quant. Grav. 20, 369CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Tabor M. (1989). Chaos and Integrability in Nonlinear Dynamics. Wiley, New YorkMATHGoogle Scholar
  12. 12.
    Castagnino M., Lombardi O. (2004). “Self-induced decoherence: a new approach”. Stud. Hist. Phil. Mod. Phys. 35, 73CrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Penrose, “Singularities and time asymmetry” in General Relativity, an Einstein Centenary Survey, S. Hawking and W. Israel, eds., (Cambridge, Cambridge, 1979).Google Scholar
  14. 14.
    Sachs R.G. (1987). The Physics of Time-Reversal. University of Chicago, ChicagoGoogle Scholar
  15. 15.
    Price H. (1996). Time’s Arrow and the Archimedes’ Point. Oxford, OxfordGoogle Scholar
  16. 16.
    Castagnino M., Lara L., Lombardi O. (2003). “The direction of time: from the global arrow to the local arrow”. Int. J. Theor. Phys. 42: 2487CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Castagnino M., Lombardi O., Lara L. (2003). “The global arrow of time as a geometrical property of the Universe”. Found. Phys. 33, 877CrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Castagnino and O. Lombardi, “The generic nature of the global and non-entropic arrow of time and the dual role of the energy–momentum tensor” J. Phys. A: Math. and Gen. 37, 4445 (2004); M. Castagnino and O. Lombardi, “The global non-entropic arrow of time: from global geometrical asymmetry to local energy flow” Synthese forthcoming.Google Scholar
  19. 19.
    J. P. Antoine, “Quantum mechanics beyond Hilbert space” in Irreversibility and Causality, A. Bohm, H-D Doebner and P. Kielanowski, eds., Springer Lecture Notes in Physics, Vol. 504 (Springer, Berlin and New York, 1998), pp 3–33.Google Scholar
  20. 20.
    Bohm A. (1994). Quantum Mechanics: Fundations and Applications. Springer, Berlin and New YorkGoogle Scholar
  21. 21.
    A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture Notes in Physics, Vol. 348 (Springer, New York, 1989); A. Bohm, M. Gadella, and S. Maxon, “Extending the stationary quantum mechanics of being to a nonstationary quantum theory of becoming and decaying”, Comp. Math. Appl. 34, 427–466 (1997).Google Scholar
  22. 22.
    M. Gadella and F. Gómez, “A unified mathematical formalism for the Dirac formulation of Quantum Mechanics” Found. Phys. 32, 815 (2002); M. Gadella and F. Gómez, “On the mathematical basis of the Dirac formulation of Quantum Mechanics” Int. J. Theor. Phys. 42, 2225–2254 (2003).Google Scholar
  23. 23.
    Paley R., Wiener N. (1934). Fourier Transforms in the Complex Domain. American Mathematical Society, New YorkMATHGoogle Scholar
  24. 24.
    Antoniou I.E., Dmitrieva L., Kuperin Yu., Melnikov Yu. (1997).“Resonances and the extension of dynamics to rigged Hilbert space”. Comp. Math. Appl. 34, 339MathSciNetGoogle Scholar
  25. 25.
    Gadella M., de la Madrid R. (1999). “Resonances and time reversal operator in Quantum mechanics”. Int. J. Theor. Phys. 38, 93CrossRefMATHGoogle Scholar
  26. 26.
    Gadella M., Laura R. (2001). “Gamow dyads and expectation values” Int. J. Quant. Chem. 81, 307–320CrossRefGoogle Scholar
  27. 27.
    Castagnino M., Gadella M., Id Betan R., Laura R. (2001). “Gamow functionals on operator algebras”. J. Phys. A: Math. Gen. 34, 10067CrossRefMATHADSMathSciNetGoogle Scholar
  28. 28.
    Civitarese O., Gadella M., Id Betan R. (1999). “On the mean value of the energy for resonant states”. Nucl. Phys. A 660, 255CrossRefADSGoogle Scholar
  29. 29.
    Ludwig G. (1983–1985). Foundations of Quantum Mechanics, Vol. I and II, (Springer, BerlinMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.CONICET—Instituto de Astronomía y Física del EspacioBuenos AiresArgentina
  2. 2.Departamento de Física Teórica, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  3. 3.CONICET—Instituto de Estudios sobre la Ciencia y la TecnologíaUniversidad Nacional de QuilmesBuenos AiresArgentina

Personalised recommendations