Abstract
Physics and chemistry underlie the nature of all the world around us, including human brains. Consequently some suggest that in causal terms, physics is all there is. However, we live in an environment dominated by objects embodying the outcomes of intentional design (buildings, computers, teaspoons). The present day subject of physics has nothing to say about the intentionality resulting in existence of such objects, even though this intentionality is clearly causally effective. This paper examines the claim that the underlying physics uniquely causally determines what happens, even though we cannot predict the outcome. It suggests that what occurs is the contextual emergence of complexity: the higher levels in the hierarchy of complexity have autonomous causal powers, functionally independent of lower level processes. This is possible because top-down causation takes place as well as bottom-up action, with higher level contexts determining the outcome of lower level functioning and even modifying the nature of lower level constituents. Stored information plays a key role, resulting in non-linear dynamics that is non-local in space and time. Brain functioning is causally affected by abstractions such as the value of money and the theory of the laser. These are realised as brain states in individuals, but are not equivalent to them. Consequently physics per se cannot causally determine the outcome of human creativity, rather it creates the possibility space allowing human intelligence to function autonomously. The challenge to physics is to develop a realistic description of causality in truly complex hierarchical structures, with top-down causation and memory effects allowing autonomous higher levels of order to emerge with genuine causal powers.
Similar content being viewed by others
References
Ackoff R. (1999). Ackoff’s Best: His Classic Writings in Management. Wiley and Sons, New York
P. W. Anderson, “More is different”, Science 177, 393 (1972); Reprinted in P. W. Anderson, A Career in Theoretical Physics (World Scientific, Singapore, 1994).
P. W. Anderson, “Is complexity physics? Is it science? What is it?”, Phys. Today. July 9 (1991).
Anderson P.W. (2005). “Emerging physics: a fresh approach to viewing the complexity of the universe”. Nature 434, 701
P. Ao, “Laws in Darwinian evolutionary theory”, To appear, Phys. Life Rev. (2005).
Ashby R. (1958). An Introduction to Cybernetics. Chapman and Hall, London
Bai-Lin H. (1984). Chaos. World Scientific, Singapore
Beer S. (1966). Decision and Control. Wiley, New York
Beer S. (1972). Brain of the Firm. Wiley, New York
J. Berg and M. Lassig, “Local graph alignment and motif search in biological networks”, http://lanl.arXiv.org/abs/cond-mat/0308251 (2004).
Berger P.L. (1963). Invitation to Sociology: A Humanistic Perspective. Doubleday, New York
Berger P., Luckmann T. (1967). The Social Construction of Reality: A Treatise in the Sociology of Knowledge. Anchor, New York
R. C. Bishop, “Patching physics and chemistry together”, To appear, Phil. Sci.(2005). “Downward causation in fluid convection”. Unpublished (2005). “The hidden premise in the causal argument for physicalism”. Unpublished (2005).
R. C. Bishop and F. K. Kronz, “Is Chaos indeterministic?” in Language, Quantum, Music: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology & Philosophy of Science, Florence, August, 1995, M. L. Dalla Chiara, R. Guintini and F. Laudisa, eds. (Kluwer Academic, Amsterdam, 1999), pp. 129–141.
Booch G. (1994). Object Oriented Analysis and design with Applications. Addison Wesley, New York
Boshoff A. et al. (2004). “Molecular chaperones in biology, medicine and protein biotechnology”. South Afr. J. Sci. 100, 665
Burnet F.M. (1959). The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge
D. T. Campbell, “Downward causation”, in Studies in the Philosophy of Biology: Reduction and Related Problems, F. J. Ayala and T. Dobhzansky, eds. (University of California Press, Berkeley, 1974).
Campbell N.A. (1991). Biology. Benjamin Cummings, New York
Chalmers D. (1997). The Conscious Mind. Oxford University Press, Oxford
Churchman C.W. (1968). The Systems Approach. Delacorte Press, New York
Connor C.E. (2005). “Friends and grandmothers”. Nature 435: 1036
Conway Morris S. (2003). Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge
L. F. Costa, “Hierarchical characterisation of complex networks”, http://lanl.arXiv.org/ abs/cond-mat/0412761 (2005).
Davies P.C.W. (1974). The Physics of Time Asymmetry. Surrey University Press, London
Deacon T. (1997). The Symbolic Species: The Co-Evolution of Language and the Human Brain. Penguin, London
Dirac P.A.M. (1929). “Quantum mechanics of many electron systems”. Proc. R. Soc. A123, 714
Dobson C.M. (2004). “Principles of protein folding, misfolding, and aggregation”. Semi. Cell Dev. Biol. 15, 3
Dodelson S. (2003). Modern Cosmology. Academic Press, New York
Donald M. (2001). A. Mind so Rare: The Evolution of Human Consciousness. W. W. Norton, New York
Earley J.E. ed. (2003). Chemical Explanation: Characteristics, Development, Autonomy. New York Academy of Sciences, New York
Ellis G.F.R. (2002). “Cosmology and local physics”. New Astron. Revi. 46, 645
Ellis G.F.R. “True complexity and its associated ontology”, in Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, J. D. Barrow, P. C. W. Davies and C. L. Harper, eds. (Cambridge University Press, Cambridge, 2004).
G. F. R. Ellis, “On the nature of emergent reality”, in The Re-emergence of Emergence, P. Clayton and P. C. W. Davies eds. (Oxford University Press, Oxford, 2005); http://www.mth.uct.ac.za/∼ellis/emerge.doc.
Ellis G.F.R. (2005). “Physics, complexity, and causality”. Nature 435, 743
Ellis G.F.R. (2005). “Physics and the real world”. Phys. Today July, 49
G. F. R. Ellis and D. W. Sciama, “Global and non-global problems in cosmology”, in General Relativity, L. O’Raifeartaigh, ed. (Oxford University Press, Oxford, 1972), p. 35.
G. F. R. Ellis and J. Toronchuk, “Affective neural darwinism”, in Consciousness and Emotion: Agency, Conscious Choice, and Selective Perception, R. D. Ellis and N. Newton, eds. (John Benjamins, 2005), p. 81.
P. Fernandez and R. V. Sole, “The role of computation in complex regulatory networks”, http://lanl.arXiv.org/abs/q-bio.MN/03110102 (2003).
Flood R.L., Carson E.R. (1990). Dealing with Complexity: An Introduction to the Theory and Application of Systems Science. Plenum Press, London
Gilbert S.F. (1991). Developmental Biology. Sinauer, Sunderland, MA
Glimcher P.W. (2005). “Indeterminacy in brain and behaviour”. Ann. Rev. Psychol. 56, 25
Greene B. (2003). The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. W.W. Norton, New York
S. H. Hansen, B. Moore, M. Zemp, and J. Stafel, “A universal velocity distribution of relaxed collisionless structures”, http://lanl.arXiv.org/abs/Astro-ph/0505420 (2005).
J. B. Hartle, “Theories of everything and Hawking’s wave function of the universe”, in The Future of Theoretical Physics and Cosmology:Celebrating Stephen Hawking’s 60th Birthday, G. W. Gibbons, E. P. S. Shellard and S. J. Rankin, eds. (Cambridge University Press, Cambridge, 2003).
J. B. Hartle, “The physics of now”, http://labl.arXiv.org/abs/gr-qc/0403001 (2004).
Hartmann S. (2001). “Effective field theories, reductionism, and scientific explanation”. Stud. Hist. Phil. Mod. Phys. 32, 267
Hawking S.W., Ellis G.F.R. (1973). The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge
Hogan C. (2000). “Why the universe is just so”. Rev. Mod. Phys. 72: 1149
Isham C.J. (1997). Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, London
S. Itkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itkovitz, and U. Alon, “Coarse graining and self-dissimilarity of complex networks”, http://lanl.arXiv.org/abs/q-bio.MN/ 0405011 (2004).
K. Jain and J. Krug, “Evolutionary trajectories in rugged fitness landscapes”, http://lanl.arXiv.org/abs/q-bio.PE/0501028 (2005).
E. Joos, “Elements of environmental decoherence”, http://lanl.arXiv.org/abs/quant-ph/9908008 (1998).
Kane R. (1996). The Significance of Free Will. Oxford University Press, Oxford
N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Network motifs in biological networks: roles and generalizations”, http://lanl.arXiv.org/abs/q-bio.MN/0312019 (2003).
Keller E.F. (2000). The Century of the Gene. Harvard University Press, Cambridge
K. Klemm and S. Bornholdt, “Topology of biological networks and reliability of information prcessing”, http://lanl.arXiv.org/abs/q-bio.MN/0409022 (2004).
Kolb E.W., Turner M.S. (1990). The Early Universe. Addison Wesley, Redwood City
Kuppers B.-O. (1990). Information and the Origin of Life. MIT Press, Cambridge
Kurakin A. (2005). “Self-organisation vs watchmaker: stochastic gene expression and cell differentiation”. Dev. Genes. Evol. xxx, 1
Laughlin R.B. (2000). “Fractional quantisation”. Rev. Mod. Phy. 71, 863
Laughlin R.B. (2005). A Different Universe: Re-Inventing Physics from the Bottom Down. Basic Books, New York
Lehn J.-M. (1995). Supramolecular Chemistry. VCH Verlag, Weinheim
Love N. (2005). “Cognition and the language myth”. Lang. Sci. 26, 525
Luisi P.L. (2002). “Emergence in chemistry: chemistry as the embodiment of emergence”. Found. Chem. 4, 183
Milsum J.H. (1966). Biological Control Systems Analysis. McGraw Hill, New York
Mitchell M. (1998). An Introduction to Genetic Algorithm. MIT Press, Cambridge
Morowitz H. (2002). The Emergence of Everything: How the World came to be Complex. Oxford University Press, Oxford
T. J. Newman, “Modelling multi-cellular systems using sub-cellular elements”, http://lanl.arXiv.org/abs/q-bio.QM/0504028 (2005).
Ottersen O.P. (2005). “Sculpted by competition”. Nature 434, 969
Peacocke A.R. (1990). An Introduction to the Physical Chemistry of Biological Organization. Clarendon Press, Oxford
Penrose R. (1989). The Emperor’s New Mind. Oxford University Press, Oxford
Penrose R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London
Percival I. (1991). “Schrödinger’s quantum cat”. Nature 351, 357
Pink T. (2004). Free Will: A Very Short Introduction. Oxford University Press, Oxford
C. Quigg, “Natures greatest puzzles”, http://lanl.arXiv.org./abs/hep-ph/0502070 (2005).
Quiroga R.Q., Reddy L., Kreiman G., Koch C., Gried I. (2005). “Invariant visual representation by a single neurons in the human brain”. Nature 435: 1102
Rees M.J. (2001). Just Six Numbers: The Deep Forces that Shape the Universe. Basic Books, New York
Rees M.J. (2001). Our Cosmic Habitat. Princeton University Press, Princeton
Richerson P.J., Boyd R. (2005). Not by Genes Alone: How Culture Transformed Human Evolution. University of Chicago Press, Chicago
Roberts E.B. (1981). Managerial Applications of Systems Dynamics. MIT Press, Cambridge
Roederer J. (2005). Information and its Role in Nature. Springer, Berlin
H. J. Schellnhuber, “Earth system analysis and the second copernican revolution”, Nature 6761 (supplement to vol 402), C19 (1999).
Schrödinger E. (1967). What is Life? Mind and Matter. Cambridge University Press, Cambridge
Scott A. (1995). Stairway to the Mind. Springer-Verlag, Berlin
Silk J. (2001). The Big Bang. Freeman, New York
Simon H.A. “The architecture of complexity”. Proc. Am. Phil. Soc. 106, (1962).
R. V. Sole and P. Fernandez, “Modularity ‘for free’ in genome architecture?” http://lanl.arXiv.org/abs/q-bio.GN/0312032 (2003).
H. P. Stapp, “Quantum interactive dualism: an alternative to materialism”, To appear, J. Consc. Studies(2005).
Sutherland W.J. (2005). “The best solution”. Nature 435, 569
Tannebaum A.S. (1990). Structured Computer Organisation. Prentice Hall, Englewood Cliffs
Thompson J.M.T., Stewart H.B. (1987). Nonlinear Dynamics and Chaos. John Wiley, New York
Thom R. (1989). Structural Stability and Morphogenesis. Addison Wesley, New York
Vogel S. (1998). Cats’ Paws and Catapults: Mechanical Worlds of Nature and People. Penguin Books, London
Wolpert L. (1998). Principles of Development. Oxford University Press, Oxford
Zeh H.D. (1992). The Physical Basis of the Direction of Time. Springer-Verlag, Berlin
W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical”, http://lanl.arXiv.org/abs/quant-ph/0105127 v3. “Quantum darwinism and envariance”. in Science and Ultimate Reality: Quantum theory, Cosmology, and Complexity, J. D. Barrow, P. C. W. Davies, and C. L. Harper, eds. (Cambridge University Press, Cambridge, 2003),