Foundations of Physics

, Volume 36, Issue 1, pp 19–29 | Cite as

Spin-Zero Particles must be Bosons: A New Proof within Nonrelativistic Quantum Mechanics

Article

Abstract

The key assumption is that of Leinaas and Myrheim and of Berry and Robbins, here specialized to spin zero: for n particles, the argument of the wave function should be the unordered multiplet {r1,r2,...,rn}. I also make use of the requirement that wave functions in the domain of the Hamiltonian must be continuous functions of the spatial variables. The new proof presented here has advantages of simplicity and transparency in comparison with earlier work based on the same two principles and it uses weaker assumptions, especially avoiding the use of rotations of the relative coordinate of identical particles.

Keywords

spin statistics nonrelativistic quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pauli W. (1940). Phys. Rev 58:716CrossRefMATHADSGoogle Scholar
  2. 2.
    Weinberg S. (1975). The Quantum Theory of Fields, Vol 1, Chap 5. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Duck I. and Sudarshan E.C.G. (1998). Am. J. Phys. 66:284CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Messiah A.M.L. and Greenberg O.W. (1964). Phys. Rev. B 248:136MathSciNetGoogle Scholar
  5. 5.
    Leinaas J.M., Myrheim J. (1977). Nuovo Cimento B 37:1CrossRefADSGoogle Scholar
  6. 6.
    Berry M.V. and Robbins J.M. (1997). Proc. Roy. Soc. London, A 453: 1771MATHADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Berry M.V. and Robbins J.M. (2000). J. Phys. A 33:L207CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    M. Peshkin, Phys. Rev. A 67, 042102 (2003) (For a Comment and Reply, see R. E. Allen and A. R. Mondragon, Phys. Rev. A 68, 046101 (2003) and M. Peshkin, Phys. Rev. A 68, 046102 (2003)).Google Scholar
  9. 9.
    A. Shaji and E. C. G. Sudarshan, e-print quant-ph/0306033 v2.Google Scholar
  10. 10.
    M. Peshkin, e-print quant-ph/0402118.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations