Foundations of Physics

, Volume 35, Issue 11, pp 1825–1856 | Cite as

Towards a Coherent Theory of Physics and Mathematics: The Theory–Experiment Connection

  • Paul Benioff


The problem of how mathematics and physics are related at a foundational level is of interest. The approach taken here is to work towards a coherent theory of physics and mathematics together by examining the theory experiment connection. The role of an implied theory hierarchy and use of computers in comparing theory and experiment is described. The main idea of the paper is to tighten the theory experiment connection by bringing physical theories, as mathematical structures over C, the complex numbers, closer to what is actually done in experimental measurements and computations. The method replaces C by C n which is the set of pairs, R n ,I n , of n figure rational numbers in some basis. The properties of these numbers are based on those of numerical measurement outcomes for continuous variables. A model of space and time based on R n is discussed. The model is scale invariant with regions of constant step size interrupted by exponential jumps. A method of taking the limit n→∞ to obtain locally flat continuum-based space and time is outlined. Also R n based space is invariant under scale transformations. These correspond to expansion and contraction of space relative to a flat background. The location of the origin, which is a space and time singularity, does not change under these transformations. Some properties of quantum mechanics, based on C n and on R n space are briefly investigated.


coherent theory physics mathematics theory–experiment connection measurement outcome numbers physics based on these numbers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Zurek, quant-ph/0105127; Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982).Google Scholar
  2. 2.
    E. Joos and H. D. Zeh, Zeit. Phys. B 59, 23 (1985); H. D. Zeh, quant-ph/9905004; E Joos, quant-ph/ 9808008.Google Scholar
  3. 3.
    S. L. Adler, quant-ph/0112095.Google Scholar
  4. 4.
    Everett, H. 1957Rev. Mod Phys.29454462CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Wheeler, J.A. 1957Rev. Mod. Phys.29463465CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    STRINGS 2000, Proceedings of the 2000 International Superstrings Conference University of Michigan, Ann Arbor 10 – 15 July 2000, M. J. Duff, J. T. Liu and J. Lu, eds. (University of Michigan), Strings 2000 Conference-Physics Problems for the Next Millenium, URL: Scholar
  7. 7.
    M. Tegmark, Classical Quant. Gravity 14, L69–L75 (19917), quant-ph/9702052.Google Scholar
  8. 8.
    H. van Dam and Y. Jack Ng, quant-ph/0108067.Google Scholar
  9. 9.
    Hogan, C. 2000Revs. Mod. Phys.721149CrossRefADSGoogle Scholar
  10. 10.
    Barrow, J.D., Tipler, F.J. 1989The Anthropic Cosmologic PrincipleOxford University PressNew YorkGoogle Scholar
  11. 11.
    Weinberg, S. 1994Dreams of a Final TheoryVintage BooksNew York, NYGoogle Scholar
  12. 12.
    Greene, B. 2000The Elegant UniverseVintage BooksNew York, NYGoogle Scholar
  13. 13.
    Tegmark, M.. 1998Ann. Phys270151ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    A.A. Frankel, Y. Bar-hillel, A. Levy, and D. van Dalen, Foundations of Set Theory, second revised edition, Studies in Logic and the Foundations of Mathematics, Vol. 67 (North-Holland Publishing Co., Amsterdam, 1973).Google Scholar
  15. 15.
    Shapiro, S. 1997Philosophy of Mathematics, Structure and OntologyOxford University PressNew York, NYzbMATHGoogle Scholar
  16. 16.
    A. Heyting, Intuitionism, An Introduction, 3rd Revised edn (North-Holland Publishing, New York, 1971).Google Scholar
  17. 17.
    Bishop, E. 1967Foundations of Constructive AnalysisMcGraw Hill Book Co.New YorkzbMATHGoogle Scholar
  18. 18.
    Beeson, M.J. 1985Foundations of Constructive Mathematics Metamathematical StudiesSpringer VerlagNew YorkzbMATHGoogle Scholar
  19. 19.
    K. Svozil, Found. Phys. 25, 1541 (1995); D. Bridges and K. Zvozil, Internat. J. Theoret. Phys. 39, 503–515 (2000).Google Scholar
  20. 20.
    P. Benioff, Quant. Inf. Proc. 1, 495 (2002), Preprint quant-ph/0210211.Google Scholar
  21. 21.
    R. Landauer, Phys. Today 44(5), 23, (1991); Phys. Lett. A 217, 188 (1996); in Feynman and Computation, Exploring the Limits of Computers, A.J.G. Hey, ed. (Perseus Books, Reading MA, 1998).Google Scholar
  22. 22.
    E. Wigner, Commum. Pure Appl. Math. 13, 001 (1960), Reprinted in E. Wigner, Symmetries and Reflections (Indiana Univ. Press, Bloomington IN 1966), pp. 222–237.Google Scholar
  23. 23.
    D. Finkelstein, Int. J. Theoret. Phys. 31, 1627 (1992); “Quantum sets, assemblies and plexi” in Current Issues in Quantum Logic, E. Beltrametti and B. van Frassen, eds. (Plenum Publishing Co. New York, 1981), pp 323–333; Quantum Relativity (Springer Verlag, New York, 1994).Google Scholar
  24. 24.
    Takeuti G.(1981). “Quantum Set theory”. in Current Issues in Quantum Logic, E. G. Beltrametti and B. C. van Fraasen, eds. (Plenum Press, New York 1981), pp. 303–322.Google Scholar
  25. 25.
    Titani, S., Kozawa, H. 2003Int. J Theoret. Phys.4225752602CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Schlesinger, K-G. 1999J. Math. Phys.4013441358CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Odlyzko, “Primes, Quantum Chaos and Computers” in Number Theory, Proceeding of a Symposium, May 4 1989, Washington DC, Board on Mathematical Sciences, National Research Council, 1990, pp. 35–46.Google Scholar
  28. 28.
    Crandall, R.E. 1996J. Phys A: Math. Gen.296795CrossRefADSzbMATHMathSciNetGoogle Scholar
  29. 29.
    S. Okubo, “Lorentz-invariant Hamiltonian and Reimann Hypothesis” Los Alamos Archives, quant-ph/9707036.Google Scholar
  30. 30.
    Y. Ozhigov, “Fast Quantum Verification for the Formulas of Predicate Calculus”, Los Alamos Archives Rept No. quant- ph/9809015.Google Scholar
  31. 31.
    H. Buhrman, R. Cleve, and A. Wigderson, “Quantum vs Classical Communication and Computation”, Los Alamos Archives Rept. No. quant-ph/9802040.Google Scholar
  32. 32.
    Spector, D. 1998J. MathPhys.391919zbMATHMathSciNetGoogle Scholar
  33. 33.
    Król J., Int. J. Theoret. Phys. 42, 921–935, (2003); Found. Phys. 34, 843 (2004).Google Scholar
  34. 34.
    Davies P.C.W., “Why is the Physical World so Comprehensible?” in Complexity, Entropy, and Physical Information, Proceedings of the 1988 workshop on complexity, entropy, and the physics of information, may-june 1989, Santa Fe New Mexico, W. H. Zurek, ed. (Addison-Weseley Publishing Co. Redwood City CA 1990), pp 61–70.Google Scholar
  35. 35.
    Benioff, P. 1998Phys. Rev A58893CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Benioff, P. 2002Found. Phys.329891029CrossRefMathSciNetGoogle Scholar
  37. 37.
    P. Benioff, quant-ph/0303086.Google Scholar
  38. 38.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht, 1993) xiv+446 pp., reprinted in paperback (1995); A. Peres and W. H. Zurek, Is quantum theory universally valid? Am. J. Phys. 50, 807 (1982); A. Peres, The physicist’s role in physical laws, Found. Phys. 10, 631 (1980); C. A. Fuchs and A. Peres, Quantum theory needs no interpretation, Phys. Today 53, 70 (March 2000).Google Scholar
  39. 39.
    Shoenfield, J.R. 1967Mathematical LogicAddison Weseley Publishing Co. Inc.Reading, MA.zbMATHGoogle Scholar
  40. 40.
    Smullyan, R. 1992Gödel’s Incompleteness TheoremsOxford University PressNew YorkzbMATHGoogle Scholar
  41. 41.
    Väänänen, J. 2001Bull Symbolic Logic7504zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Deutsch, D. 1997The Fabric of RealityPenguin BooksNew YorkGoogle Scholar
  43. 43.
    Marek, V.W., Mycielski, J. 2001Am. Math Monthly108449MathSciNetzbMATHGoogle Scholar
  44. 44.
    C. C. Chang and H. J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, Vol 73, (American Elsevier Publishing Co. Inc. New York, NY (1973)).Google Scholar
  45. 45.
    Rogers, H. 1967Theory of Recursive Functions and Effective ComputabilityMcGraw HillNew YorkzbMATHGoogle Scholar
  46. 46.
    Laughlin, R.B., Pines, D. 2000Proc. Nat’l Acad. Sci.9728ADSMathSciNetGoogle Scholar
  47. 47.
    D. Meyer, quant-ph/9805039, Private communication.Google Scholar
  48. 48.
    48 Meyer, D. 1999Phys. Rev. Lett.833751ADSMathSciNetGoogle Scholar
  49. 49.
    A. Peres, Finite Precision Measurements Nullifies Euclid’s Postulates, quant-ph/0310035.Google Scholar
  50. 50.
    K. Yosida Functional Analysis fifth Edition, No 123 in A Series of Comprehensive Studies in Mathematics, Springer Verlag, New york, 1978.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Physics DivisionArgonne National LabArgonne

Personalised recommendations