Skip to main content
Log in

Clifford Space as a Generalization of Spacetime: Prospects for QFT of Point Particles and Strings

Foundations of Physics Aims and scope Submit manuscript

The idea that spacetime has to be replaced by Clifford space (C-space) is explored. Quantum field theory (QFT) and string theory are generalized to C-space. It is shown how one can solve the cosmological constant problem and formulate string theory without central terms in the Virasoro algebra by exploiting the peculiar pseudo-Euclidean signature of C-space and the Jackiw definition of the vacuum state. As an introduction into the subject, a toy model of the harmonic oscillator in pseudo-Euclidean space is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. P. A. M. Dirac, talk presented at International School of Subnuclear Physics; 19th Course: The Unity of the Fundamental Interactions, 31 July–11 August (Erice, Sicily, Italy, 1981).

  2. R.P. Feynman (1951) Phys. Rev. 84 108 Occurrence Handle10.1103/PhysRev.84.108 Occurrence Handle0044.23304 Occurrence Handle13,410e Occurrence Handle1951PhRv...84..108F

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. S.S. Schweber (1986) Rev. Mod. Phys. 58 449 Occurrence Handle10.1103/RevModPhys.58.449 Occurrence Handle87m:01040 Occurrence Handle1986RvMP...58..449S

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Fock, Phys. Z. Sowj. 12, 404 (1937); E. C. G. Stueckelberg, Helv. Phys. Acta. 14, 322 (1941); 14, 588 (1941); 15, 23 (1942).

  5. L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973); L. P. Horwitz and F. Rohrlich, Phys. Rev. D. 24, 1528 (1981); 26, 3452 (1982); L. P. Horwitz, R. I. Arshansky and A. C. Elitzur, Found. Phys. 18, 1159 (1988); R. Arshansky, L. P. Horwitz and Y. Lavie, Found. Phys. 13, 1167 (1983); L. P. Horwitz, In Old and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology, Alwyn van der Merwe ed. Plenum, New York, 1983). L. P. Horwitz and Y. Lavie, Phys. Rev. D 26, 819 (1982); L. Burakovsky, L. P. Horwitz, and W. C. Schieve, Phys. Rev. D 54, 4029 (1996); L. P. Horwitz, and W. C. Schieve, Ann. Phys. 137, 306 (1981); J. R. Fanchi, Phys. Rev. D 20, 3108 (1979); see also the review J. R. Fanchi, Found. Phys. 23, 287 (1993), and many references therein; J. R. Fanchi Parametrized Relativistic Quantum Theory (Kluwer Academic, Dordrecht, 1993); M. Pavšič, Found. Phys. 21, 1005 (1991); M. Pavšič,Nuovo Cim. A104, 1337 (1991).

  6. M. Pavšič (2001) The Landscape of Theoretical Physics: A Global View; From Point Particle to the Brane World and Beyond, in Search of Unifying Principle Kluwer Academic Dordrecht

    Google Scholar 

  7. W. Pezzaglia, “Physical Applications of a Generalized Geometric Calculus” [arXiv: gr-qc/9710027]; “Dimensionally Democratic calculus and Principles of Polydimensional Physics” [arXiv: gr-qc/9912025]; “Classification of Multivector Theories and Modifications of the Postulates of Physics” [arXiv: gr-qc/9306006]; “Physical Applications of Generalized Clifford Calculus: Papatetrou equations and Metamorphic Curvature” [arXiv: gr-qc/9710027]; “Classification of Multivector theories and modification of the postulates of Physics” [arXiv: gr-qc/9306006].

  8. C. Castro, Chaos, Solitons Fractals 10, 295 (1999); Chaos, Solitons Fractals 12, 1585 (2001); “The Search for the Origins of M Theory: Loop Quantum Mechanics, Loops/Strings and Bulk/Boundary Dualities” [arXiv: hep-th/9809102]; C. Castro, Chaos, Solitons Fractals 11, 1663 (2000); Found. Phys. 30, 1301 (2000).

  9. M. Pavšič (2001) Found. Phys. 31 1185 Occurrence Handle2002k:83062

    MathSciNet  Google Scholar 

  10. M. Pavšič (2003) Found. Phys. 33 1277 Occurrence Handle2004k:81175

    MathSciNet  Google Scholar 

  11. C. Castro M. Pavšič (2002) Phys. Lett. B 539 133 Occurrence Handle2003k:83099 Occurrence Handle2002PhLB..539..133C

    MathSciNet  ADS  Google Scholar 

  12. A. Aurilia S. Ansoldi E. Spallucci (2002) Class. Quant. Grav. 19 3207 Occurrence Handle2003j:81133 Occurrence Handle2002CQGra..19.3207A

    MathSciNet  ADS  Google Scholar 

  13. C. Castro M. Pavšič (2003) Int. J. Theor. Phys. 42 1693 Occurrence Handle10.1023/A:1026123119587

    Article  Google Scholar 

  14. D. Cangemi, R. Jackiw, and B. Zwiebach, Ann. of Phys. 245, 408 (1996); E. Benedict, R. Jackiw, and H.-J. Lee, Phys. Rev. D 54, 6213 (1996)

  15. S. Teitler, Supplemento al Nuovo Cimento III, 1 (1965) and references therein; Supplemento al Nuovo Cimento III, 15 (1965); J. Math.Phys. 7, 1730 (1966); J. Math. Phys. 7, 1739 (1966); L. P. Horwitz, J. Math. Phys. 20, 269 (1979); H. H. Goldstine and L. P. Horwitz, Mathe. Ann. 164, 291 (1966).

  16. D. Hestenes, Space-Time Algebra (Gordon & Breach, New York, 1966); D. Hestenes and G. Sobcyk, Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

  17. P. Lounesto (2001) Clifford Algebras and Spinors Cambridge University Press Cambridge

    Google Scholar 

  18. N. S. Mankoč Borštnik and H. B. Nielsen, J. Math. Phys. 43 5782 (2002) [arXiv:hep-th/0111257]; J. Math. Phys. 44 4817 (2003) [arXiv:hep-th/0303224]

  19. S. Weinberg (1989) Rev. Mod. Phys. 61 1 Occurrence Handle10.1103/RevModPhys.61.1 Occurrence Handle90e:83134 Occurrence Handle1989RvMP...61....1W

    Article  MathSciNet  ADS  Google Scholar 

  20. W. Baylis (1999) Electrodynamics, A Modern Geometric Approach Birkhäuser Boston

    Google Scholar 

  21. G. Trayling and W. Baylis, J. Phys. A 34, 3309 (2001); Int. J. Mod. Phys. A 16, Suppl. 1C, 909 (2001)

  22. B. Jancewicz (1989) Multivectors and Clifford Algebra in Electrodynamics World Scientific Singapore

    Google Scholar 

  23. Clifford Algebras and their Applications in Mathematical Physics, Vol. 1: Algebras and Physics, R. Ablamowicz and B. Fauser, eds. Vol. 2: Clifford Analysis, J. Ryan and W. Sprosig, eds. (Birkhäuser, Boston, 2000)

  24. A. Lasenby C. Doran (2002) Geometric Algebra for Physicists Cambridge University. Press Cambridge

    Google Scholar 

  25. A. M. Moya, V. V Fernandez and W. A. Rodrigues, Int.J.Theor.Phys. 40 (2001) 2347–2378 [arXiv: math-ph/0302007]; Multivector Functions of a Multivector Variable [arXiv: math.GM/0212223]; Multivector Functionals [arXiv: math.GM/0212224]; W.A. Rodrigues, Jr, J. Vaz, Jr. [Adv. Appl. Clifford Algebras 7 457–466 (1997); E. C de Oliveira and W. A. Rodrigues, Jr. Ann. Phys. 7, 654–659 (1998); Phys. Lett. A 291 367 (2001); W.A. Rodrigues, Jr, J. Y. Lu, Found. Phys. 27 (1997) 435–508

  26. S. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. G. Riess et al., Astron. J. 116, 1009 (1998); D. N. Spergel, et al., Astrophys. J.Suppl 148, 175 (2003); L. Page et al., Astrophys. J.Suppl. 148, 233 (2003)

  27. M. Pavšič (1999) Phys. Lett. A 254 119 Occurrence Handle99m:81130 Occurrence Handle1999PhLA..254..119P

    MathSciNet  ADS  Google Scholar 

  28. Y. S. Kim and M. E. Noz, Phys. Rev. D 8, 3521 (1973); 12, 122 (1975); 15,335 (1977); Phys. Rev. Lett. 63, 348 (1989); Y. S. Kim and M. E. Noz, Theory Applications of the Poincaré Group (Reidel, Dordrecht, 1986)

  29. See, e.g., M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987); M. Kaku, Introduction to Superstrings (Springer, New York, N.Y., 1988)

  30. M. Faux and S. J. Gates, “Adinkras: A Graphical Technology for Supersymmetric Representation Theory” [arXiv:hep-th/040800]4; S. J. J. Gates, W. D. Linch, and J. Phillips, “When Superspace is not Enough” [arXiv:hep-th/0211034]; S. J. J. Gates and L. Rana, Phys. Lett. B 369, 262 (1996) [arXiv:hep-th/9510151]; S. J. Gates and L. Rana, Phys. Lett. B 352, 50 (1995) [arXiv:hep-th/9504025]

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matej Pavšič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavšič, M. Clifford Space as a Generalization of Spacetime: Prospects for QFT of Point Particles and Strings. Found Phys 35, 1617–1642 (2005).

Download citation

  • Received:

  • Issue Date:

  • DOI: