Advertisement

Foundations of Physics

, Volume 35, Issue 8, pp 1383–1431 | Cite as

Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems

  • Diego L. Rapoport
Article

We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz potential of Maxwell’s equations in Minkowski space.We develop the theory of the Hertz potential for a general Riemannian manifold. We study the invariant state for the theory, and determine the decomposition of Q in this state which has an invariant Born measure. In addition to the logarithmic potential derivative term, we have the previous Maxwellian potentials normalized by the invariant density. We characterize the time-evolution irreversibility of the Brownian motions generated by the Cartan–Weyl laplacians, in terms of these normalized Maxwell’s potentials. We prove the equivalence of the sourceless Maxwell equation on Minkowski space, and the Dirac-Hestenes equation for a Dirac-Hestenes spinor field written on Minkowski space provided with a Cartan–Weyl connection. If Q is characterized by the invariant state of the diffusion process generated on Euclidean space, then the Maxwell’s potentials appearing in Q can be seen alternatively as derived from the internal rotational degrees of freedom of the Dirac-Hestenes spinor field, yet the equivalence between Maxwell’s equation and Dirac-Hestenes equations is valid if we have that these potentials have only two components corresponding to the spin-plane. We present Lorentz-invariant diffusion representations for the Cartan–Weyl connections that sustain the equivalence of these equations, and furthermore, the diffusion of differential forms along these Brownian motions. We prove that the construction of the relativistic Brownian motion theory for the flat Minkowski metric, follows from the choices of the degenerate Clifford structure and the Oron and Horwitz relativistic Gaussian, instead of the Euclidean structure and the orthogonal invariant Gaussian. We further indicate the random Poincaré–Cartan invariants of phase-space provided with the canonical symplectic structure. We introduce the energy-form of the exact terms of Q and derive the relativistic quantum potential from the groundstate representation. We derive the field equations corresponding to these exact terms from an average on the invariant state Cartan scalar curvature, and find that the quantum potential can be identified with 1 / 12R(g), where R(g) is the metric scalar curvature. We establish a link between an anisotropic noise tensor and the genesis of a gravitational field in terms of the generalized Brownian motions. Thus, when we have a nontrivial curvature, we can identify the quantum nonlocal correlations with the gravitational field. We discuss the relations of this work with the heat kernel approach in quantum gravity. We finally present for the case of Q restricted to this exact term a supersymmetric system, in the classical sense due to E.Witten, and discuss the possible extensions to include the electromagnetic potential terms of Q

Keywords

relativistic Brownian motions Riemann–Cartan–Weyl connections Maxwell’s equations Dirac-Hestenes equations time-ireversibility covariant Schroedinger equations time-evolution parameter spinor fields quantum gravity supersymmetric systems Clifford bundles generalized Dirac operators Quantum potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rapoport, Found phys. 35(7), (2005).Google Scholar
  2. 2.
    D. Rapoport, Rep. Math. Phys. 49(1), 1–27, (2002); ibid. Rand. Operts. Stoch.Eqs. 11(2), (2003); ibid. Discrete and Cont. Dyn. Syst. A special issue 2000, Procs. III’d Inter. Conf. Dyn.Syst. Diff. Eqts., Atlanta, 2000, S.Hu ed. ibid. Rep. Math. Phys. 50(2), 211–250 (1992).Google Scholar
  3. 3.
    D. Rapoport, Random Operts. Stoch. Eqs. 11(2), 359–380 (2003); ibid. in Trends in Partial Differential Equations on Mathematical Physics, in Honor of Prof. V.A. Solonnikov, Obidos (Portugal), May 2004, Progress in Nonlinear Differential Equations and Their Applications, 61, 225–241, J. F. Rodrigues et al. eds., (Birkhauser, Boston, 2004).Google Scholar
  4. 4.
    Hestenes, D., Sobczyck, G. 1984Clifford Calculus to Geometric CalculusD.ReidelDordrechtGoogle Scholar
  5. 5.
    M. Pavsic, The Landscape of Theoretical Physics: A global view (Kluwer, Dordrecht 2001); ibid., arXiv:gr-qc/0111092 v4.Google Scholar
  6. 6.
    W. A. Rodrigues Jr., J. Math. Phys. 45, 2908–2944 (2004); R. Mosna and W. A. Rodrigues Jr., J.Math.Phys. 45, 2945–2966 (2004).Google Scholar
  7. 7.
    D. Hestenes, J. Math. Phys. 8, 798–808 (1975); 16, 556–571 (1975); 14 (1973), 893–905; 15 (1974), 1768–1777 (1974); 15 (1974), 1778–1786; 16 (1975), 556–572; Found. Phys.15, 63–87 (1985); Found. Phys. 12, 153–168 (1982); Int. J. Theor. Phys. 25, 1013–1028 (1986).Google Scholar
  8. 8.
    D. Hestenes, Found.Phys.20, 1213–1332 (1990); ibid. in D. Hestenes and A.Weingartshofer eds,The Electron pp. 21–26, (Kluwer, Dordrecht, 1991).Google Scholar
  9. 9.
    W. Rodrigues and Q. de Souza, in, Gravitation, The Space Time Structure, Proceedings, Silarg VIII, 1994, W. Rodrigues et al. eds., pp. 170–210 (World Scientific, Singapore, 1995).Google Scholar
  10. 10.
    Moya, A..M., Fernandez, V.V., Rodrigues, W.A.,Jr. 2001Metric Clifford algebrasAdv Appl Clifford Alg.115373Google Scholar
  11. 11.
    Rodrigues J., W.A., Souza, Q.A.G, Lounesto, P. 1995Int J Theor Phys.3518541900Google Scholar
  12. 12.
    Th. Frankel, The Geometry of Physics, An Introduction (Cambridge University Press, Cambridge, 1997); G. de Rham, Differentiable Manifolds (Springer, Berlin, 1984); F.Warner,Introduction to Differentiable Manifolds and Lie Groups (Holden Day, San Francisco,1971).Google Scholar
  13. 13.
    H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schroedinger Operators with Applications to Quantum Mechanics and Global Geometry (Springer, Berlin, 1987); G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, Berlin, 1996).Google Scholar
  14. 14.
    Rapoport, D. 1991Int. J. Theor. Phys.301497Google Scholar
  15. 15.
    S. Hawking, in General Relativity, an Einstein Centenary Survey, S. Hawking and W. Israel (Cambridge University Press, Cambridge 1979); C. Itzykson and J. M. Drouffe, eds. Statistical Field Theory, vol. I (From Brownian Motion to Renormalization, and Lattice Gauge Theories), (Cambridge University Press, Cambridge 1989)Google Scholar
  16. 16.
    Hurley, D., Vandyck, M. 1999Geometry, Spinors and ApplicationsSpringerBerlinGoogle Scholar
  17. 17.
    Weyl, H. 1952Space, Time and MatterDoverNew YorkGoogle Scholar
  18. 18.
    V. de Sabbata and C. Sivaram, Spin and Torsion in Gravitation (World Scientific, 1994); F. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester, Rev. Modern Phys., 48, 3 (1976); F. Hehl, J. Dermott McCrea, E. Mielke and Y. Ne’eman, Phys. Reports vol. 258, 1–157 (1995).Google Scholar
  19. 19.
    C. Misner, K.Thorpe and J. A. Wheeler Gravitation (Freeman, New York, 1973); A. S. Eddington, The Mathematical Theory of Relativity (Chelsea, London, 1995) (reedited).Google Scholar
  20. 20.
    R. M. Kiehn, A topological perspective of electromagnetism, in http://www.cartan.pair.com.
  21. 21.
    G. F. Rubilar, Y. N. obukhov and F. W. Hehl, Int. J. Mod. Phys. D. 11, 1227; F. W. Hehl and Yu. N. Obukhov, Foundations on Classical Electrodynamics: Charge, Flux, and Metric (Birkhauser, Boston, MA, 2003); Le Bellac and J. M. Levy-Leblond, Nuovo Cimento 143(2), 217–233 (1972).Google Scholar
  22. 22.
    Post, E.J. 1997Formal Structure of ElectromagneticsDoverNew YorkreprintedGoogle Scholar
  23. 23.
    W. Rodrigues and J. Lu, Found.Phys. 27, 435–508 (1997); W. Rodrigues and E. C. Oliveira, Ann. der Physik 7, 654–651 (1998); W.Rodrigues and J.E. Maiorino, Sci. Tech. Mag. 2(4), 1–167 (1999).Google Scholar
  24. 24.
    Fock, V.A. 1964Theory of Space, Time, and GravitationPergamon PressLondonGoogle Scholar
  25. 25.
    E. Cartan, The Theory of Spinors, reprinted (Dover, New York, 1996); A. Lasenby, C. Doran and S. Gull, in Spinors, Twistors, Clifford Algebras and Quantum Deformations, pp. 233–245, Z. Oziewicz et al. eds. (Kluwer, Dordrecht, 1993).Google Scholar
  26. 26.
    Rapoport, D., Rodrigues, W., Souza, Q., Vaz, J., Algebras,  1995Groups and Geometries.112535Google Scholar
  27. 27.
    A. Einstein and Kauffman, Annals Maths. 56 (1955); Yu Obukhov, Phys. Letts. 90 A, 13 (1982).Google Scholar
  28. 28.
    Marmanis, H. 1998Phys Fluids.101428ADSMathSciNetGoogle Scholar
  29. 29.
    E. C. Stueckelberg, Helv. Physica Acta 14, 322, 588 (1941); L. P. Horwitz and C. Piron, Helv. Physics Acta 46, 316 (1973); L. P. Horwitz and C. Piron, Helv. Physica Acta 66, 694 (1993); M. C. Land, N. Shnerb and L. P. Horwitz, J. Math. Phys. 36, 3263 (1995); L. P. Horwitz and N. Shnerb, Found. of Phys. 28, 1509 (1998).Google Scholar
  30. 30.
    Kyprianidis, A. 1987Phys. Rep.155127references thereinCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    B. de Witt, “Quantum field theory in curved space–time,” Phys. Rep. C 19(6) (1975), 295–357. G. W. Gibbons, in General Relativity, An Einstein Centennary Survey, S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979); N. D. Birrell and P. C. W. Davies, Quantum Field Theories in Curved Space, (Cambridge University Press, Cambridge 1982); J. Schwinger, Phys. Rev. 82, 664 (1951).Google Scholar
  32. 32.
    R. E. Collins and J. R. Fanchi, Nuovo Cimento A 48, 314 (1978); J. Fanchi, Found. Phys. 30(8), 1161–1189 (2000) & 31(9), 1267–1285 (2001).Google Scholar
  33. 33.
    D. Rapoport, in Instabilities and Nonequilibrium Structures vol. VI, Proceedings of the Sixth International Workshop, E. Tirapegui et al. eds. (Kluwer, Dordrecht, 2000); ibid. in Proceedings of the International Workshops on the Frontiers of Mathematics, Physics and Biology, Monteroduni, Italy, August 1995, 2, G.Tsagas ed. (Hadronic Press and Ukraine Academy of Sciences, Palm Harbor Florida-Kiev, 1996).Google Scholar
  34. 34.
    C. W. Gardiner, Handbook of Stochastic Processes, 2nd. ed. (Springer, Berlin, 1993); Z. Schuss, Stochastic Differential Equations and its Applications (Academic Press, New York, 1987); Risken, The Fokker–Planck Equation (Springer, Berlin, 1993).Google Scholar
  35. 35.
    Lavenda, B. 1973Thermodynamics of Irreversible ProcessesDoverNew YorkGoogle Scholar
  36. 36.
    A. Sommerfeld, Mechanics of Deformable Bodies, Lectures on Theoretical Physics vol. II (Academic Press, New York, 1964); Sir William Thomson (Lord Kelvin), Mathematical and Physical Papers, vol. 3, art. 49, 50,52.Google Scholar
  37. 37.
    W. A. Rodrigues Jr., Int. J. Math. Math. Sci. 2003 2007–2734 (2003).Google Scholar
  38. 38.
    Witten, E. 1994Monopoles and four-manifoldsMath. Res. Lett.1769ADSzbMATHMathSciNetGoogle Scholar
  39. 39.
    Stratton, J. 1941Electromagnetic TheoryMac Graw-HillNew YorkGoogle Scholar
  40. 40.
    Fanchi, J. 1993Parametrized Relativistic Quantum TheoryKluwerDordrechtGoogle Scholar
  41. 41.
    Trump, M., Schieve, W. 1994Classical Relativistic Many-Body DynamicsKluwerDordrechtGoogle Scholar
  42. 42.
    Prigogine, I. 1995From Being to BecomingFreemanNew YorkGoogle Scholar
  43. 43.
    Langouche, F., Roenkarts, D., Tirapegui, E. 1981Functional Integration and Semiclassical ExpansionsReidelDordrechtGoogle Scholar
  44. 44.
    Rapoport, D. 1997Int. J. Theor. Phys.3621152152zbMATHMathSciNetGoogle Scholar
  45. 45.
    D. Bohm, Phys. Rev. 85, (1952), 166 and 180; D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1953); L. de Broglie, La réinterpretation de la Mécanique ondulatoire, (Gauthier-Villars, Paris, 1971); ibid. Etude critique des bases de l’interpretation actuelle de la Mécanique ondulatoire (Gauthier-Villars, Paris, 1963); ibid. Jalons pour une nouvelle microphysique (Gauthier-Villars, Paris 1978).Google Scholar
  46. 46.
    D. Rapoport, in Instabilities and Nonequilibrium Structures vol. IX, Proceedings of the Ninth International Workshop, O. Descalzi et al. eds. (Kluwer, Boston, 2003).Google Scholar
  47. 47.
    S. Hojman, M. P. Rosenbaum, L. C. Shepley, Phys. Rev. D17, 1341 (1978); F. Hehl and Yu. Obukhov, arXiv:gr-qc/0001010 v2 (3 may 2000.)Google Scholar
  48. 48.
    A. N. Kolmogorov, Zur Umkehrbarkeit der statistichen Naturgesetze, Math. Annalen 113, 776–772 (1937).Google Scholar
  49. 49.
    H. H. Sallhoffer, Z. Naturforsch. 33a, 1378 (1978); 45a (1990), 1361; ibid. in Essays on the Formal Aspects of Electromagnetic Theory, 268–286, A. Lakhtakia ed. (World Scientific, Singapore 1993); A. A. Campolattaro, Int. J. Theor. Phys. 19 (1980), 99, 19; 127 (1980); 29, 141 (1990).Google Scholar
  50. 50.
    J. Vaz Jr. and W. A. Rodrigues, Int. J. Theor. Phys. 32, 945–949 (1995); W. Rodrigues and J. Vaz, in R.Delanghe ed. Clifford Algebras and their Applications in Mathematical Physics, Proceedings of the III Workshop (Kluwer, Dordrecht, 1993); W. Rodrigues, J. Vaz and E. Recami (1993b), in Courants, Amers, Écueils en Microphysique, Centennial Celebration of L. de Broglie, Annales Fondation L. de Broglie, Paris (special issue) (1993); G. Lochak, Int. J. Theor. Phys. 24, 1019 (1985).Google Scholar
  51. 51.
    D.Rapoport, Adv.Appl.Cliff.Alg. 8(1), 129–146 (1998); ibid. in Group XXI, Physical Applications and Mathematical Aspects of Algebras, Groups and Geometries, Proceedings, Clausthal, 1996, H. Doebner et al. eds. (World Scientific, Singapore, 1997); D.Rapoport & M. Tilli, Hadronic J. Suppl., 2 (2) 682 (1986).Google Scholar
  52. 52.
    G. Lochak,Int. J. Theor. Phys. 24, 1019 (1985); C. Daviau, Ann. Fond. L. de Broglie 14, 373 (1989); C. Daviau and G. Lochak, Ann. Fond. L. de Broglie 16, 43 (1991).Google Scholar
  53. 53.
    O.Oron and L. Horwitz, Relativistic Brownian Motion as an Eikonal Approximation to a Quantum Evolution Equation, Found. Phys. IARD 2004, special issue; ibid. in Progress in General Relativity and Quantum Cosmology Research, V. Dvoeglazov ed. (Nova Science, Hauppage, 2004); ibid., Phys. Letts. A280, (2001), 265.Google Scholar
  54. 54.
    J. P. Zambrini, Phys. Rev. A33, 1532–1548 (1986) and A 35, 3631–3649 (1987); K. L. Chung and J. P. Zambrini, Introduction to Random Time and Quantum Randomness, 2nd. ed., World Scientific, Singpore (2003); A. B. Cruzeiro, Wu Liming and J. P. Zambrini, in Stochastic Analysis and Mathematical Physics, ANESTOC ’98 (Santiago, Chile), R. Rebolledo ed. (Birkhauser, Boston, 2000).Google Scholar
  55. 55.
    Nagasawa, M. 1999Quantum Theory and Brownian motionsBirkhauserBostonGoogle Scholar
  56. 56.
    M. Serva, Annals Inst. H. Poincaré, Phys. Theor. 49, 312 (1998); R. Marra and M. Serva, Annals Inst. H. Poincaré Phys. Theor. 53, (1), 97–108 (1990).Google Scholar
  57. 57.
    E. Nelson, The theory of Brownian Motion (Princeton University Press, Princeton (New Jersey), 1967); ibid. Quantum Fluctuations (Princeton University Press, NJ 1985).Google Scholar
  58. 58.
    P. Baxendale, K.D. Elworthy, and Z.Wahrschein. verw. 65, 245. (1983) K. Kunita, Stochastic Flows and Stochastic Differential Equations, (Cambridge University Press, Cambridge 1994); N. Ikeda and S.Watanabe, Stochastic Differential Equations and diffusion Processes (North-Holland-Kodansha, Amsterdam-Tokyo, 1989).Google Scholar
  59. 59.
    Graham, R. 1977“Lagrangian for diffusions in curved space–time”Phys Rev Letts.3851CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    E. Schroedinger Sitzunsberger Press Akad. Wiss. Math. Phys. Math., 144 (1931). Ann. I. H. Poincaré 11, 300 (1932).Google Scholar
  61. 61.
    Pavsic, M., Recami, E., Rodrigues, W.A.,Jr., Macarrone, G.D., Salesi, G. 1993Phys. Lett. B.318481488ADSMathSciNetGoogle Scholar
  62. 62.
    Kleinert, H. 1991Path integrals in Quantum Mechanics, Statistics and Polymer PhysicsWorld ScientificSingaporeGoogle Scholar
  63. 63.
    Davies, E.B. 1989Heat kernels and Spectral TheoryCambridge University PressCambridgeGoogle Scholar
  64. 64.
    S. Albeverio et al., J. Math. Phys. 18, 907 (1977) and Stochastic Methods in Physics, Math. Phys. Rep. 77, in K. D. Elworthy and de C. Witt-Morette, eds. no. 3, (1977). See also F. Guerra contribution in the last reference.Google Scholar
  65. 65.
    Fukushima,  1981Markov Processes and Dirichlet formsNorth-HollandAmsterdamGoogle Scholar
  66. 66.
    H. Araki, J. Math. Phys. 11, 492 (1960). A.I. Kirillov, Theor. Math. Phys., 345–353, 447–453 (1991).Google Scholar
  67. 67.
    Reed, M., Simon, B. 1975Modern of Modern Mathematical Physics II, Fourier Analysis, Self-adjointnessAcademic PressNew YorkGoogle Scholar
  68. 68.
    Holland, P.R. 1994The quantum theory of motionCambridge Univestity PressCambridge U.K.Google Scholar
  69. 69.
    D. Rapoport, in Gravitation, The space–time Structure, W. Rodrigues et al. eds. Singapore, 1995; ibid. in Chaos and Dyn. Systems II, Proc. Conf. Dynamical Syst. and Chaos, Tokyo 1994, Y. Aizawa ed. (World Scientific, Singapore, 1995).Google Scholar
  70. 70.
    Callan, C.G., Coleman, S., Jackiw, R. 1970Annals. Phys.5942CrossRefMathSciNetGoogle Scholar
  71. 71.
    Witten, E. 1982J Diff Geom.17661zbMATHMathSciNetGoogle Scholar
  72. 72.
    D. Rapoport, in Proceedings, International Conference on Dynamical Systems and Chaos, Tokyo, May 1994, Y. Aizawa et al. eds. vol. 2, (World Scientific, Singapore, 1995).Google Scholar
  73. 73.
    Ya. B. Zeldovich, A. A. Rumauzkin and D.D.Sokoloff, The Almighty Chance (World Scientific, Singpore 1990). R. Stratonovich, Non-linear non-equilibrium Thermodynamics, I, II, (Springer, Berlin, 1992, 1994). I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Thomas, Springfield, 1955). G. Nicolis and I. Prigogine, Selforganization in Non-equilibrium Systems (Wiley, New York, 1977).Google Scholar
  74. 74.
    B. R. Frieden, Physics from the Fisher Information, (Cambridge University Press, Cambridge, 1999); www.optics.arizona.edu/Fisher/; R.A. Fisher, Phil. Trans. R. Soc. London 222, 309, (1922).Google Scholar
  75. 75.
    Davies, E. B. 1990Heat Kernels and Spectral TheoryCambridge University PressCambridgeGoogle Scholar
  76. 76.
    D. Rapoport, in Proc. IX th. Marcel Grossman Meeting, Rome, June 2000, R. Ruffini et al. eds. (World Scientific, Singapore, 2003); ibid. ibid. Adv. Appl. Clifford Alg. 8(1), 127–169, 1998.Google Scholar
  77. 77.
    Ebin, D., Marsden, J. 1971Annals. Math.92102163MathSciNetGoogle Scholar
  78. 78.
    D. Rapoport and S. Sternberg, Annals Phys. 158, 447 (1984); ibid, Lett. N. Cimento 80A, 371 (1984).Google Scholar
  79. 79.
    Lasota, A., Mackey, M. 1985Probabilistic Properties of Dynamical SystemsCambridge University PressCambridgeGoogle Scholar
  80. 80.
    S. Sternberg, Annals Phys. 162, 85 (1985); J.M. Souriau, Annales I.H. Poincaré 20 A(1974).Google Scholar
  81. 81.
    S. Gupta, Proc. Royal Soc. 63A (1950), 681; K. Bleuler, Phys. Helv. Acta 23, 567 (1950).Google Scholar
  82. 82.
    W. Pezzaglia Jr., gr-qc/9704048Google Scholar
  83. 83.
    Marshall, T.W. 1980Physica.103 A172ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Maths Department, FIUBAUniversity of Buenos Aires and DCyT-UNQArgentina

Personalised recommendations