Skip to main content
Log in

Covariant Relativistic Statistical Mechanics of Many Particles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In this paper the quantum covariant relativistic dynamics of many bodies is reconsidered. It is emphasized that this is an event dynamics. The events are quantum statistically correlated by the global parameter τ. The derivation of an event Boltzmann equation emphasizes this. It is shown that this Boltzmann equation may be viewed as exact in a dilute event limit ignoring three event correlations. A quantum entropy principle is obtained for the marginal Wigner distribution function. By means of event linking (concatenations) particle properties such as the equation of state may be obtained. We further reconsider the generalized quantum equilibrium ensemble theory and the free event case of the Fermi-Dirac and Bose-Einstein distributions, and some consequences. The ultra-relativistic limit differs from the non-covariant theory and is a test of this point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. R. Balescu (1964) Cargese Summer School Gordon and Breach New York

    Google Scholar 

  2. R. Balescu T. Kotera (1967) Physica. 33 558

    Google Scholar 

  3. H. A. Bethe E. E. Saltpeter (1957) The Quantum Mechanics of One and Two Electron Atoms Academic Press New York

    Google Scholar 

  4. N. N. Bogoliubov (1946) “Problems Dynamical in Statistical Physics,” translated by E.K. Gora G. E. Uhlenbeck J. Boer Particlede (Eds) Studies in Statistical Mechanics I North Holland Amsterdam

    Google Scholar 

  5. L. Boltzmann (1964) Lectures on Gas Theory, translated by S.G. Brush. University of California Press Berkeley

    Google Scholar 

  6. L. Burakovski L. P. Horwitz (1993) Physica. A 201 666 Occurrence Handle1993PhyA..201..666B

    ADS  Google Scholar 

  7. L. Burakovski L. P. Horwitz W. C. Schieve (1996) Phys. Rev. D. 54 4029 Occurrence Handle1996PhRvD..54.4029B

    ADS  Google Scholar 

  8. L. Burakovski, L. P. Horwitz, and W. C. Schieve, “Mass-Proper Time Uncertainty Relations in a Manifestly Covariant Relativistic Statistical Mechanics,” preprint (1996).

  9. L. Burakovski L. P. Horwitz (1997) Nuclear Phys. A. 614 373 Occurrence Handle1997NuPhA.614..373B

    ADS  Google Scholar 

  10. J.L. Cook (1972) Aust. J. Phys. 25 117 Occurrence Handle1972AuJPh..25..117C

    ADS  Google Scholar 

  11. S. R. Groot Particlede C. K. Leeuwen Particlevan G. Weert Particlevan (1980) Relativistic Kinetic Theory North Holland New York

    Google Scholar 

  12. J. Ehlers, in Lectures in Statistical Physics 28, W. C. Schieve and J. S. Turner eds. (Springer, New York, 1974).

  13. A. Einstein (1922) The Meaning of Relativity Princeton University Press Princeton, New Jersey

    Google Scholar 

  14. J.R. Fanchi (1993) Parametrized Relativistic Quantum Theory Kluwer Dordrecht

    Google Scholar 

  15. R.P. Feynman (1949) Phys. Rev. 76 746 Occurrence Handle1949PhRv...76..749F Occurrence Handle11,765d

    ADS  MathSciNet  Google Scholar 

  16. H. Goldstein (1980) Classical Mechanics EditionNumber2 Addison-Wesley Reading, Massachusetts

    Google Scholar 

  17. R. Hakim (1967) J. Math. Phys. 8 1315–1379

    Google Scholar 

  18. P. Havas, Statistical Mechanics of Equilibrium and Non-Equilibrium, Meixner eds. (North Holland, Amsterdam, 1965).

  19. L. P. Horwitz C. Piron (1973) Helv. Physica. Acta. 46 316

    Google Scholar 

  20. L. P. Horwitz W. C. Schieve C. Piron (1981) Ann of Phys, N.Y. 137 306 Occurrence Handle83e:82004

    MathSciNet  Google Scholar 

  21. Horwitz L.P., from Old and New Questions in Physics,ed. by van der Merwe (Plenon, New York, 1983).

  22. L.P. Horwitz Y. Lavie (1983) Phys Rev D. 26 819 Occurrence Handle1982PhRvD..26..819H Occurrence Handle83h:81082

    ADS  MathSciNet  Google Scholar 

  23. L.P. Horwitz S. Shashoua W.C. Schieve (1989) Physica A. 161 300 Occurrence Handle10.1016/0378-4371(89)90471-8 Occurrence Handle1989PhyA..161..300H Occurrence Handle90j:82022

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Hudson (1974) Rep. Math. Phys. 6 249 Occurrence Handle0324.60018 Occurrence Handle52 #4896

    MATH  MathSciNet  Google Scholar 

  25. F. Juttner (1911) Ann. Phys., Leipzig. 34 856

    Google Scholar 

  26. H. Kandrup (1984) Ann. Phys. N.Y. 153 44 Occurrence Handle10.1016/0003-4916(84)90184-2 Occurrence Handle85k:82004b

    Article  MathSciNet  Google Scholar 

  27. R. L. Liboff (1998) Kinetic Theory EditionNumber3 Springer Verlag New York

    Google Scholar 

  28. J. A. McLennan (1989) Introduction to Non-Equilibrium Statistical Mechanics Prentice Hall New York

    Google Scholar 

  29. W. Pauli (1958) Theory of Relativity Pergamon New York

    Google Scholar 

  30. F. Rohrlich (1961) Ann. Phys. N.Y. 13 93 Occurrence Handle10.1016/0003-4916(61)90028-8 Occurrence Handle0098.19903 Occurrence Handle26 #5847

    Article  MATH  MathSciNet  Google Scholar 

  31. E. V. Shuryak (1988) The QCD Vacuum, Hadrons and Superdense Matter World Scientific Singapore

    Google Scholar 

  32. E.C.G. Stueckelberg (1941) Helv. Phys. Acta. 14 588 Occurrence Handle0026.17703 Occurrence Handle4,56f

    MATH  MathSciNet  Google Scholar 

  33. J.L. Synge (1957) Relativistic Gas Thyeory North Holland Amsterdam

    Google Scholar 

  34. J. R. Taylor (1972) Scattering Theory John Wiley New York

    Google Scholar 

  35. R.C. Tolman (1967) Principles of Statistical Mechanics Oxford University Press London

    Google Scholar 

  36. M.A. Trump W.C. Schieve (1999) Classical Relativistic Many-Body Dynamics Kluwer Dordrecht

    Google Scholar 

  37. E.P. Wigner (1932) Phys. Rev. 49 2127

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wm. C. Schieve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schieve, W.C. Covariant Relativistic Statistical Mechanics of Many Particles. Found Phys 35, 1359–1381 (2005).

Download citation

  • Accepted:

  • Issue Date:

  • DOI: