Foundations of Physics

, Volume 35, Issue 8, pp 1359–1381 | Cite as

Covariant Relativistic Statistical Mechanics of Many Particles

  • Wm. C. SchieveEmail author

In this paper the quantum covariant relativistic dynamics of many bodies is reconsidered. It is emphasized that this is an event dynamics. The events are quantum statistically correlated by the global parameter τ. The derivation of an event Boltzmann equation emphasizes this. It is shown that this Boltzmann equation may be viewed as exact in a dilute event limit ignoring three event correlations. A quantum entropy principle is obtained for the marginal Wigner distribution function. By means of event linking (concatenations) particle properties such as the equation of state may be obtained. We further reconsider the generalized quantum equilibrium ensemble theory and the free event case of the Fermi-Dirac and Bose-Einstein distributions, and some consequences. The ultra-relativistic limit differs from the non-covariant theory and is a test of this point of view.


quantum many particle dynamics Boltzmann equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balescu, R. 1964Cargese Summer SchoolGordon and BreachNew YorkGoogle Scholar
  2. 2.
    Balescu, R., Kotera, T. 1967Physica.33558Google Scholar
  3. 3.
    Bethe, H. A., Saltpeter, E. E. 1957The Quantum Mechanics of One and Two Electron AtomsAcademic PressNew YorkGoogle Scholar
  4. 4.
    Bogoliubov, N. N. 1946“Problems Dynamical in Statistical Physics,” translated by E.K. GoraUhlenbeck, G. E.Boer, J. eds. Studies in Statistical Mechanics INorth HollandAmsterdamGoogle Scholar
  5. 5.
    Boltzmann, L. 1964Lectures on Gas Theory, translated by S.G. Brush.University of California PressBerkeleyGoogle Scholar
  6. 6.
    Burakovski, L., Horwitz, L. P. 1993Physica. A201666ADSGoogle Scholar
  7. 7.
    Burakovski, L., Horwitz, L. P., Schieve, W. C. 1996Phys. Rev. D.544029ADSGoogle Scholar
  8. 8.
    L. Burakovski, L. P. Horwitz, and W. C. Schieve, “Mass-Proper Time Uncertainty Relations in a Manifestly Covariant Relativistic Statistical Mechanics,” preprint (1996).Google Scholar
  9. 9.
    Burakovski, L., Horwitz, L. P. 1997Nuclear Phys. A.614373ADSGoogle Scholar
  10. 10.
    Cook, J.L. 1972Aust. J. Phys.25117ADSGoogle Scholar
  11. 11.
    Groot, S. R., Leeuwen, C. K., Weert, G. 1980Relativistic Kinetic TheoryNorth HollandNew YorkGoogle Scholar
  12. 12.
    J. Ehlers, in Lectures in Statistical Physics 28, W. C. Schieve and J. S. Turner eds. (Springer, New York, 1974).Google Scholar
  13. 13.
    Einstein, A. 1922The Meaning of RelativityPrinceton University PressPrinceton, New JerseyGoogle Scholar
  14. 14.
    Fanchi, J.R. 1993Parametrized Relativistic Quantum TheoryKluwerDordrechtGoogle Scholar
  15. 15.
    Feynman, R.P. 1949Phys. Rev.76746ADSMathSciNetGoogle Scholar
  16. 16.
    Goldstein, H. 1980Classical Mechanics2Addison-WesleyReading, MassachusettsGoogle Scholar
  17. 17.
    Hakim, R. 1967J. Math. Phys.813151379Google Scholar
  18. 18.
    P. Havas, Statistical Mechanics of Equilibrium and Non-Equilibrium, Meixner eds. (North Holland, Amsterdam, 1965).Google Scholar
  19. 19.
    Horwitz, L. P., Piron, C. 1973Helv. Physica. Acta.46316Google Scholar
  20. 20.
    Horwitz, L. P., Schieve, W. C., Piron, C. 1981Ann of Phys, N.Y.137306MathSciNetGoogle Scholar
  21. 21.
    Horwitz L.P., from Old and New Questions in Physics,ed. by van der Merwe (Plenon, New York, 1983).Google Scholar
  22. 22.
    Horwitz, L.P., Lavie, Y. 1983Phys Rev D.26819ADSMathSciNetGoogle Scholar
  23. 23.
    Horwitz, L.P., Shashoua, S., Schieve, W.C. 1989Physica A.161300CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Hudson, R. 1974Rep. Math. Phys.6249zbMATHMathSciNetGoogle Scholar
  25. 25.
    Juttner, F. 1911Ann. Phys., Leipzig.34856Google Scholar
  26. 26.
    Kandrup, H. 1984Ann. Phys. N.Y.15344CrossRefMathSciNetGoogle Scholar
  27. 27.
    Liboff, R. L. 1998Kinetic Theory3Springer VerlagNew YorkGoogle Scholar
  28. 28.
    McLennan, J. A. 1989Introduction to Non-Equilibrium Statistical MechanicsPrentice HallNew YorkGoogle Scholar
  29. 29.
    Pauli, W. 1958Theory of RelativityPergamonNew YorkGoogle Scholar
  30. 30.
    Rohrlich, F. 1961Ann. Phys. N.Y.1393CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Shuryak, E. V. 1988The QCD Vacuum, Hadrons and Superdense MatterWorld ScientificSingaporeGoogle Scholar
  32. 32.
    Stueckelberg, E.C.G. 1941Helv. Phys. Acta.14588zbMATHMathSciNetGoogle Scholar
  33. 33.
    Synge, J.L. 1957Relativistic Gas ThyeoryNorth HollandAmsterdamGoogle Scholar
  34. 34.
    Taylor, J. R. 1972Scattering TheoryJohn WileyNew YorkGoogle Scholar
  35. 35.
    Tolman, R.C. 1967Principles of Statistical MechanicsOxford University PressLondonreprinted by (Dovor, New York, 1967).Google Scholar
  36. 36.
    Trump, M.A., Schieve, W.C. 1999Classical Relativistic Many-Body DynamicsKluwerDordrechtGoogle Scholar
  37. 37.
    Wigner, E.P. 1932Phys. Rev.492127Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Physics, Center for Statistical Mechanics and ThermodynamicsUniversity of TexasAustin

Personalised recommendations