Skip to main content

Uncertain hypothesis test with application to uncertain regression analysis

Abstract

This paper first establishes uncertain hypothesis test as a mathematical tool that uses uncertainty theory to help people rationally judge whether some hypotheses are correct or not, according to observed data. As an application, uncertain hypothesis test is employed in uncertain regression analysis to test whether the estimated disturbance term and the fitted regression model are appropriate. In order to illustrate the test process, some numerical examples are documented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Chen, X., & Ralescu, D. (2012). B-Spline method of uncertain statistics with application to estimating travel distance. Journal of Uncertain Systems, 6(4), 256–262.

    Google Scholar 

  • Ding, J., & Zhang, Z. (2021). Statistical inference on uncertain nonparametric regression model. Fuzzy Optimization and Decision Making. https://doi.org/10.1007/s10700-021-09353-0.

  • Lio, W., & Liu, B. (2018). Residual and confidence interval for uncertain regression model with imprecise observations. Journal of Intelligent & Fuzzy Systems, 35(2), 2573–2583.

    Article  Google Scholar 

  • Lio, W., & Liu, B. (2020). Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Computing, 24, 9351–9360.

    Article  Google Scholar 

  • Lio, W., & Liu, B. (2021). Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China. Fuzzy Optimization and Decision Making, 20(2), 177–188.

    MathSciNet  Article  Google Scholar 

  • Liu, B. (2007). Uncertainty Theory (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Liu, B. (2009). Some research problems in uncertainty theory. Journal of Uncertain Systems, 3(1), 3–10.

    Google Scholar 

  • Liu, B. (2010). Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Berlin: Springer.

    Book  Google Scholar 

  • Liu, S. (2019). Leave-\(p\)-out cross-validation test for uncertain Verhulst-Pearl model with imprecise observations. IEEE Access, 7, 131705–131709.

    Article  Google Scholar 

  • Liu, Y., & Liu, B. (2020). Estimating unknown parameters in uncertain differential equation by maximum likelihood estimation. Technical Report.

  • Liu, Z. (2021). Generalized moment estimation for uncertain differential equations. Applied Mathematics and Computation, 392, 125724.

    MathSciNet  Article  Google Scholar 

  • Liu, Z., & Jia, L. (2020). Cross-validation for the uncertain Chapman-Richards growth model with imprecise observations. International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, 5(28), 769–783.

    MathSciNet  Article  Google Scholar 

  • Liu, Z., & Yang, X. (2020). Variable selection in uncertain regression analysis with imprecise observations. Technical Report.

  • Liu, Z., & Yang, Y. (2020). Least absolute deviations estimation for uncertain regression with imprecise observations. Fuzzy Optimization and Decision Making, 19(1), 33–52.

    MathSciNet  Article  Google Scholar 

  • Sheng, Y. H., Yao, K., & Chen, X. (2020). Least squares estimation in uncertain differential equations. IEEE Transactions on Fuzzy Systems, 28(10), 2651–2655.

    Article  Google Scholar 

  • Song, Y., & Fu, Z. (2018). Uncertain multivariable regression model. Soft Computing, 22(17), 5861–5866.

    Article  Google Scholar 

  • Wang, X., Gao, Z., & Guo, H. (2012). Delphi method for estimating uncertainty distributions. Information: An International Interdisciplinary Journal, 15(2), 449–460.

    MathSciNet  MATH  Google Scholar 

  • Wang, X., & Peng, Z. (2014). Method of moments for estimating uncertainty distributions. Journal of Uncertainty Analysis and Applications, 2, 5.

    Article  Google Scholar 

  • Yang, X., & Liu, B. (2019). Uncertain time series analysis with imprecise observations. Fuzzy Optimization and Decision Making, 18(3), 263–278.

    MathSciNet  Article  Google Scholar 

  • Yang, X., Liu, Y., & Park, G. (2020). Parameter estimation of uncertain differential equation with application to financial market. Chaos, Solitons and Fractals, 139, 110026.

    MathSciNet  Article  Google Scholar 

  • Yang, X., & Ni, Y. (2020). Least-squares estimation for uncertain moving average model. Communications in Statistics-Theory and Methods. https://doi.org/10.1080/03610926.2020.1713373.

  • Yao, K., & Liu, B. (2018). Uncertain regression analysis: An approach for imprecise observations. Soft Computing, 22(17), 5579–5582.

    Article  Google Scholar 

  • Yao, K., & Liu, B. (2020). Parameter estimation in uncertain differential equations. Fuzzy Optimization and Decision Making, 19(1), 1–12.

    MathSciNet  Article  Google Scholar 

  • Ye, T., & Liu, Y. (2020). Multivariate uncertain regression model with imprecise observations. Journal of Ambient Intelligence and Humanized Computing, 11, 4941–4950.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Grant No.61873329 and Grant No.12026225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoding Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Liu, B. Uncertain hypothesis test with application to uncertain regression analysis. Fuzzy Optim Decis Making 21, 157–174 (2022). https://doi.org/10.1007/s10700-021-09365-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-021-09365-w

Keywords

  • Uncertainty theory
  • Uncertain statistics
  • Hypothesis test
  • Regression analysis