Appendix
In this appendix, detailed calculation process of numerical examples is introduced.
Determine the LLVPR according to the linguistic fundamental scale by pair-wise comparisons respectively.
$$\begin{aligned} C= & {} \left[ {\begin{array}{*{20}{c}} - &{}{\left( {{h_1},t} \right) }&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_2},t} \right) }&{}{\left( {{h_2},t} \right) }\\ {\left( {{h_1},f} \right) }&{} - &{}{\left( {{h_1},t} \right) }&{}{\left( {{h_2},t} \right) }&{}{\left( {{h_2},t} \right) }\\ {\left( {{h_1},f} \right) }&{}{\left( {{h_1},f} \right) }&{} - &{}{\left( {{h_1},t} \right) }&{}{\left( {{h_1},t} \right) }\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{} - &{}{\left( {{h_1},t} \right) }\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{}{\left( {{h_1},f} \right) }&{} - \end{array}} \right] ;\\ {A^{\left( 1 \right) }}= & {} \left[ {\begin{array}{*{20}{c}} - &{}{\left( {{h_1},t} \right) }&{}{\left( {{h_0},t} \right) }\\ {\left( {{h_1},f} \right) }&{} - &{}{\left( {{h_1},f} \right) }\\ {\left( {{h_0},f} \right) }&{}{\left( {{h_1},t} \right) }&{} - \end{array}} \right] ; {A^{\left( 2 \right) }} = \left[ {\begin{array}{*{20}{c}} - &{}{\left( {{h_1},t} \right) }&{}{\left( {{h_0},t} \right) }\\ {\left( {{h_1},f} \right) }&{} - &{}{\left( {{h_1},f} \right) }\\ {\left( {{h_0},f} \right) }&{}{\left( {{h_1},t} \right) }&{} - \end{array}} \right] ;\\ {A^{\left( 3 \right) }}= & {} \left[ {\begin{array}{*{20}{c}} - &{}{\left( {{h_1},t} \right) }&{}{\left( {{h_2},t} \right) }\\ {\left( {{h_1},f} \right) }&{} - &{}{\left( {{h_1},t} \right) }\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{} - \end{array}} \right] ; {A^{\left( 4 \right) }} = \left[ {\begin{array}{*{20}{c}} - &{}{\left( {{h_3},t} \right) }&{}{\left( {{h_2},t} \right) }\\ {\left( {{h_3},f} \right) }&{} - &{}{\left( {{h_1},t} \right) }\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{} - \end{array}} \right] ;\\ {A^{\left( 5 \right) }}= & {} \left[ {\begin{array}{*{20}{c}} - &{}{\left( {{h_2},t} \right) }&{}{\left( {{h_2},t} \right) }\\ {\left( {{h_2},f} \right) }&{} - &{}{\left( {{h_1},t} \right) }\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{} - \end{array}} \right] . \end{aligned}$$
Compute the LLVPR positive matrix and negative matrix of every preference relation matrix.
$$\begin{aligned} {C^ + }= & {} \left[ {\begin{array}{*{20}{c}} *&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_2},t} \right) }&{}{\left( {{h_2},t} \right) }\\ *&{}*&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_2},t} \right) }&{}{\left( {{h_2},t} \right) }\\ *&{}*&{}*&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_1},t} \right) } \\ *&{}*&{}*&{}*&{}{\left( {{h_1},t} \right) }\\ *&{}*&{}*&{}*&{}* \end{array}} \right] , {C^ - } = \left[ {\begin{array}{*{20}{c}} *&{}*&{}*&{}*&{}* \\ {\left( {{h_1},f} \right) }&{}*&{}*&{}*&{}*\! \\ {\left( {{h_1},f} \right) }&{}{\left( {{h_1},f} \right) }&{}*&{}*&{}*\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{}*&{}*\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{}{\left( {{h_1},f} \right) }&{}* \end{array}} \right] ;\\ {A^{\left( 1 \right) , + }}= & {} \left[ {\begin{array}{*{20}{c}} *&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_0},t} \right) }\\ *&{}*&{}*\\ *&{}{\left( {{h_1},t} \right) }&{}* \end{array}} \right] , {A^{\left( 1 \right) , - }} = \left[ {\begin{array}{*{20}{c}} *&{}*&{}*\\ {\left( {{h_1},f} \right) }&{}*&{}{\left( {{h_1},f} \right) }\\ {\left( {{h_0},f} \right) }&{}*&{}* \end{array}} \right] ;\\ {A^{\left( 2 \right) , + }}= & {} \left[ {\begin{array}{*{20}{c}} *&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_0},t} \right) }\\ *&{}*&{}*\\ *&{}{\left( {{h_1},t} \right) }&{}* \end{array}} \right] , {A^{\left( 2 \right) , - }} = \left[ {\begin{array}{*{20}{c}} *&{}*&{}*\\ {\left( {{h_1},f} \right) }&{}*&{}{\left( {{h_1},f} \right) }\\ {\left( {{h_0},f} \right) }&{}*&{}* \end{array}} \right] ;\\ {A^{\left( 3 \right) , + }}= & {} \left[ {\begin{array}{*{20}{c}} *&{}{\left( {{h_1},t} \right) }&{}{\left( {{h_2},t} \right) }\\ *&{}*&{}{\left( {{h_1},t} \right) }\\ *&{}*&{}* \end{array}} \right] , {A^{\left( 3 \right) , - }} = \left[ {\begin{array}{*{20}{c}} *&{}*&{}*\\ {\left( {{h_1},f} \right) }&{}*&{}*\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{}* \end{array}} \right] ;\\ {A^{\left( 4 \right) , + }}= & {} \left[ {\begin{array}{*{20}{c}} *&{}{\left( {{h_3},t} \right) }&{}{\left( {{h_2},t} \right) }\\ *&{}*&{}{\left( {{h_1},t} \right) }\\ *&{}*&{}* \end{array}} \right] , {A^{\left( 4 \right) , - }} = \left[ {\begin{array}{*{20}{c}} *&{}*&{}*\\ {\left( {{h_3},f} \right) }&{}*&{}*\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{}* \end{array}} \right] ;\\ {A^{\left( 5 \right) , + }}= & {} \left[ {\begin{array}{*{20}{c}} *&{}{\left( {{h_2},t} \right) }&{}{\left( {{h_2},t} \right) }\\ *&{}*&{}{\left( {{h_1},t} \right) }\\ *&{}*&{}* \end{array}} \right] , {A^{\left( 5 \right) , - }} = \left[ {\begin{array}{*{20}{c}} *&{}*&{}*\\ {\left( {{h_2},f} \right) }&{}*&{}*\\ {\left( {{h_2},f} \right) }&{}{\left( {{h_1},f} \right) }&{}* \end{array}} \right] . \end{aligned}$$
Aggregate every row of every matrix and calculate the comprehensive aggregate value. We take the \({G_{LAAO}}\) as an example.
$$\begin{aligned} {C^ + }= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.2} \right) }\\ {\left( {\left( {{h_1},t} \right) ,0} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.4} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.2} \right) }\\ * \end{array}} \right) , {C^ - } = \left( {\begin{array}{*{20}{c}} * \\ {\left( {\left( {{h_0},f} \right) ,0.2} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0.4} \right) }\\ {\left( {\left( {{h_1},f} \right) ,0} \right) }\\ {\left( {\left( {{h_1},f} \right) ,0.2} \right) } \end{array}} \right) , {\tilde{C}} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.2} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.8} \right) }\\ - \\ {\left( {\left( {{h_0},f} \right) ,0.8} \right) }\\ {\left( {\left( {{h_1},f} \right) ,0.2} \right) } \end{array}} \right) ;\\ {A^{\left( 1 \right) , + }}= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ * \\ {\left( {\left( {{h_0},t} \right) ,0.33} \right) } \end{array}} \right) , {A^{\left( 1 \right) , - }} = \left( {\begin{array}{*{20}{c}} * \\ {\left( {\left( {{h_0},f} \right) ,0.67} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0} \right) } \end{array}} \right) , {{\tilde{A}}^{\left( 1 \right) }} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0.67} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.17} \right) } \end{array}} \right) ;\\ {A^{\left( 2 \right) , + }}= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ * \\ {\left( {\left( {{h_0},t} \right) ,0.33} \right) } \end{array}} \right) , {A^{\left( 2 \right) , - }} = \left( {\begin{array}{*{20}{c}} * \\ {\left( {\left( {{h_0},f} \right) ,0.67} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0} \right) } \end{array}} \right) , {{\tilde{A}}^{\left( 2 \right) }} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0.67} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.17} \right) } \end{array}} \right) ;\\ {A^{\left( 3 \right) , + }}= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ * \end{array}} \right) , {A^{\left( 3 \right) , - }} = \left( {\begin{array}{*{20}{c}} * \\ {\left( {\left( {{h_0},f} \right) ,0.33} \right) }\\ {\left( {\left( {{h_1},f} \right) ,0} \right) } \end{array}} \right) , {{\tilde{A}}^{\left( 3 \right) }} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0} \right) }\\ - \\ {\left( {\left( {{h_1},f} \right) ,0} \right) } \end{array}} \right) ;\\ {A^{\left( 4 \right) , + }}= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.67} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ * \end{array}} \right) , {A^{\left( 4 \right) , - }} = \left( {\begin{array}{*{20}{c}} * \\ {\left( {\left( {{h_1},f} \right) ,0} \right) }\\ {\left( {\left( {{h_1},f} \right) ,0} \right) } \end{array}} \right) , {{\tilde{A}}^{\left( 4 \right) }} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.67} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0.67} \right) }\\ {\left( {\left( {{h_1},f} \right) ,0} \right) } \end{array}} \right) ;\\ {A^{\left( 5 \right) , + }}= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.33} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.33} \right) }\\ * \end{array}} \right) , {A^{\left( 5 \right) , - }} = \left( {\begin{array}{*{20}{c}} * \\ {\left( {\left( {{h_0},f} \right) ,0.67} \right) }\\ {\left( {\left( {{h_{\mathrm{1}}},f} \right) ,0} \right) } \end{array}} \right) , {{\tilde{A}}^{\left( 5 \right) }} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.33} \right) }\\ {\left( {\left( {{h_0},f} \right) ,0.17} \right) }\\ {\left( {\left( {{h_{\mathrm{1}}},f} \right) ,0} \right) } \end{array}} \right) . \end{aligned}$$
According to the above calculation, the criterion aggregation value and alternative aggregation value can be obtained as follows
$$\begin{aligned} {\left( {{\tilde{C}}} \right) ^T}= & {} \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_1},t} \right) ,0.2} \right) }&{\left( {\left( {{h_0},t} \right) ,0.8} \right) }- & {} {\left( {\left( {{h_0},f} \right) ,0.8} \right) }&{\left( {\left( {{h_1},f} \right) ,0.2} \right) } \end{array}} \right) \\ {\tilde{A}}= & {} \left( {\begin{array}{*{20}{c}} {{{\left( {{{{\tilde{A}}}^{\left( 1 \right) }}} \right) }^T}}\\ {{{\left( {{{{\tilde{A}}}^{\left( 2 \right) }}} \right) }^T}}\\ {\begin{array}{*{20}{c}} {{{\left( {{{{\tilde{A}}}^{\left( 3 \right) }}} \right) }^T}}\\ {{{\left( {{{{\tilde{A}}}^{\left( 4 \right) }}} \right) }^T}} \end{array}}\\ {{{\left( {{{{\tilde{A}}}^{\left( 5 \right) }}} \right) }^T}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_0},t} \right) ,0.33} \right) }&{}{\left( {\left( {{h_0},f} \right) ,0.67} \right) }&{}{\left( {\left( {{h_0},t} \right) ,0.17} \right) }\\ {\left( {\left( {{h_0},t} \right) ,0.33} \right) }&{}{\left( {\left( {{h_0},f} \right) ,0.67} \right) }&{}{\left( {\left( {{h_0},t} \right) ,0.17} \right) }\\ {\left( {\left( {{h_1},t} \right) ,0} \right) }&{} - &{}{\left( {\left( {{h_1},f} \right) ,0} \right) }\\ {\left( {\left( {{h_1},t} \right) ,0.67} \right) }&{}{\left( {\left( {{h_0},f} \right) ,0.67} \right) }&{}{\left( {\left( {{h_1},f} \right) ,0} \right) }\\ {\left( {\left( {{h_1},t} \right) ,0.33} \right) }&{}{\left( {\left( {{h_0},f} \right) ,0.17} \right) }&{}{\left( {\left( {{h_{\mathrm{1}}},f} \right) ,0} \right) } \end{array}} \right) \\ R= & {} {\left( {{\tilde{C}}} \right) ^T} \rightarrow {\tilde{A}} = \left( {\begin{array}{*{20}{c}} {\left( {\left( {{h_2},t}\right) ,0.28}\right) }&{\left( {\left( {{h_1},t}\right) ,0.942}\right) }&{\left( {\left( {{h_2},t}\right) ,0.868}\right) } \end{array}}\right) \end{aligned}$$