Skip to main content
Log in

Fuzzy portfolio selection model with real features and different decision behaviors

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

In the ever changing financial markets, investor’s decision behaviors may change from time to time. In this paper, we consider the effect of investor’s different decision behaviors on portfolio selection in fuzzy environment. We present a possibilistic mean-semivariance model for fuzzy portfolio selection by considering some real investment features including proportional transaction cost, fixed transaction cost, cardinality constraint, investment threshold constraints, decision dependency constraints and minimum transaction lots. To describe investor’s different decision behaviors, we characterize the return rates on securities by LR fuzzy numbers with different shape parameters in the left- and right-hand reference functions. Then, we design a novel hybrid differential evolution algorithm to solve the proposed model. Finally, we provide a numerical example to illustrate the application of our model and the effectiveness of the designed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angelelli, E., Mansini, R., & Speranza, M. G. (2008). A comparison of MAD and CVaR with real features. Journal of Banking and Finance, 32(7), 1188–1197.

    Article  Google Scholar 

  • Brest, J., Greiner, S., Bošković, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6), 646–657.

    Article  Google Scholar 

  • Cadenas, J. M., Carrillo, J. V., Garrido, M. C., Ivorra, C., & Liern, V. (2012). Exact and heuristic procedures for solving the fuzzy portfolio selection problem. Fuzzy Optimization and Decision Making, 11(1), 29–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state of the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

    Article  Google Scholar 

  • Dubios, D., & Prade, H. (1980). Fuzzy sets and system: Theory and application. New York: Academic Press.

    Google Scholar 

  • Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Z. Z., Fan, Z. P., Ip, W. H., & Chen, X. H. (2016). Fuzzy multi-objective modeling and optimization for one-shot multi-attribute exchanges with indivisible demand. IEEE Transactions on Fuzzy Systems, 24(3), 708–723.

    Article  Google Scholar 

  • Kocadaǧlı, O., & Keskin, R. (2015). A novel portfolio selection model based on fuzzy goal programming with different importance and priorities. Expert Systems with Applications, 42(20), 6898–6912.

    Article  Google Scholar 

  • Konno, H., & Wijayanayake, A. (2001). Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Mathematical Programming, 89(2), 233–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D., & Peter, S. (2011). A portfolio selection model using fuzzy returns. Fuzzy Optimization and Decision Making, 10(2), 167–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, Y. C., Hwang, K. S., & Wang, F. S. (2004). A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Computers & Mathematics with Applications, 47(8/9), 1295–1307.

    Article  MathSciNet  MATH  Google Scholar 

  • Mansini, R., & Speranza, M. G. (1999). Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research, 114(2), 219–233.

    Article  MATH  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. Information Sciences, 194, 171–208.

    Article  Google Scholar 

  • Speranza, M. G. (1993). Linear programming model for portfolio optimization. Finance, 14, 107–123.

    Google Scholar 

  • Storn, R., & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA.

  • Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsaur, R. C. (2013). Fuzzy portfolio model with different investor risk attitudes. European Journal of Operational Research, 227(2), 385–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Vernic, R. (2016). Optimal investment with a constraint on ruin for a fuzzy discrete-time insurance risk model. Fuzzy Optimization and Decision Making, 15(2), 195–217.

    Article  MathSciNet  Google Scholar 

  • Wang, S., & Zhu, S. (2002). On fuzzy portfolio selection problems. Fuzzy Optimization and Decision Making, 1(4), 361–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Xidonas, P., Mavrotas, G., Zopounidis, C., & Psarras, J. (2011). IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection. European Journal of Operational Research, 210(2), 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, S. C., Lin, T. L., Chang, T. J., & Chang, K. J. (2011). A semi-variance portfolio selection model for military investment assets. Expert Systems with Applications, 38(3), 2292–2301.

    Article  Google Scholar 

  • Zhang, W. G., Liu, Y. J., & Xu, W. J. (2012). A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs. European Journal of Operational Research, 222(2), 341–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W. G., Zhang, X. L., & Xu, W. J. (2010). A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments. Insurance: Mathematics and Economics, 46(3), 493–499.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 71501076 and 71720107002), the Natural Science Foundation of Guangdong Province of China (Nos. 2014A030310454 and 2017A030312001), the Fundamental Research Funds for the Central Universities (No. 2017ZD102) and Guangzhou Financial Services Innovation and Risk Management Research Base.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Zhang, WG. Fuzzy portfolio selection model with real features and different decision behaviors. Fuzzy Optim Decis Making 17, 317–336 (2018). https://doi.org/10.1007/s10700-017-9274-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-017-9274-z

Keywords

Navigation