Skip to main content

Intuitionistic fuzzy linear regression analysis

Abstract

Linear regression analysis in an intuitionistic fuzzy environment using intuitionistic fuzzy linear models with symmetric triangular intuitionistic fuzzy number (STriIFN) coefficients is introduced. The goal of this regression is to find the coefficients of a proposed model for all given input–output data sets. The coefficients of an intuitionistic fuzzy regression (IFR) model are found by solving a linear programming problem (LPP). The objective function of the LPP is to minimize the total fuzziness of the IFR model which is related to the width of IF coefficients. An illustrative example is also presented to depict the solution procedure of the IFR problem by using STriIFNs.

This is a preview of subscription content, access via your institution.

References

  • Akram M. (2011) Bipolar fuzzy graphs. Information Sciences 181: 5548–5564

    MathSciNet  MATH  Article  Google Scholar 

  • Akram M. (2012) Interval-valued fuzzy line graphs. Neural Computing and Applications 21: 145–150

    Article  Google Scholar 

  • Akram M., Dudek W. A. (2008) Intuitionistic fuzzy left k-ideals of semirings. Soft Computing 12: 881–890

    MATH  Article  Google Scholar 

  • Akram M., Dudek W. A. (2012) Regular bipolar fuzzy graphs. Neural Computing and Applications 21: 197–205

    Article  Google Scholar 

  • Angelov, P. (1997). Optimization in an intuitionistic fuzzy environment. Fuzzy Sets and Systems, 68, 301–306.

    Google Scholar 

  • Atanassov K. T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20: 87–96

    MathSciNet  MATH  Article  Google Scholar 

  • Diamond P. (1988) Fuzzy least squares. Information Sciences 46: 141–157

    MathSciNet  MATH  Article  Google Scholar 

  • Ishibuchi H. (1992) Fuzzy regression analysis. Japan Journal of Fuzzy Theory and Systems 4: 137–148

    MATH  Google Scholar 

  • Kacprzyk J., Fedrizzi M. (1992) Fuzzy regression analysis. Physica-Verlag, Heidelberg

    MATH  Google Scholar 

  • Kleinbaum D. G., Kupper L. L. (1978) Applied regression analysis and other multivariable methods. Wadsworth, Belmont, CA

    MATH  Google Scholar 

  • Mahapatra, B. S., & Mahapatra, G. S. (2010). Intuitionistic fuzzy fault tree analysis using intuitionistic fuzzy numbers. International Mathematical Forum, 5(21), 1015–1024.

    Google Scholar 

  • Mahapatra G. S., Roy T. K. (2009) Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. International Journal of Mathematical and Statistical Sciences 1(1): 31–38

    Google Scholar 

  • Nehi H. M. (2010) A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems 12(1): 80–86

    MathSciNet  Google Scholar 

  • Neter J., Wasserman W., Kutner M. H. (1985) Applied linear statistical models. Irwin, Homewood, IL

    Google Scholar 

  • Park, V., & Corson, S. (2001). Temporally-ordered routing algorithm (TORA), version 1, San Diego, CA: Flarion Technologies, Inc.

  • Savic D., Pedrycz W. (1991) Evaluation of fuzzy regression models. Fuzzy Sets and Systems 39: 51–63

    MathSciNet  MATH  Article  Google Scholar 

  • Tanaka H., Ishibuchi H. (1991) Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters. Fuzzy Sets and Systems 41: 145–160

    MathSciNet  MATH  Article  Google Scholar 

  • Tanaka H., Uejima S., Asai K. (1982) Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man and Cybernetics 12(6): 903–907

    MATH  Article  Google Scholar 

  • Yager R. R. (2009) Some aspects of intuitionistic fuzzy sets. Fuzzy Optimization and Decision Making 8: 67–90

    MathSciNet  MATH  Article  Google Scholar 

  • Yen K. K., Ghoshray S., Roig G. (1999) A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems 106: 167–177

    MathSciNet  MATH  Article  Google Scholar 

  • Zadeh L. A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1: 3–28

    MathSciNet  MATH  Article  Google Scholar 

  • Zadeh L. A. (1965) Fuzzy sets. Information and Control 8: 338–353

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akram.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parvathi, R., Malathi, C., Akram, M. et al. Intuitionistic fuzzy linear regression analysis. Fuzzy Optim Decis Making 12, 215–229 (2013). https://doi.org/10.1007/s10700-012-9150-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-012-9150-9

Keywords

  • Linear programming
  • Decision analysis
  • Uncertainty modelling
  • Fuzzy sets
  • Intuitionistic fuzzy regression analysis
  • Symmetric triangular intuitionistic fuzzy numbers