Skip to main content
Log in

Mean-risk model for uncertain portfolio selection

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

This paper discusses the uncertain portfolio selection problem when security returns cannot be well reflected by historical data. It is proposed that uncertain variable should be used to reflect the experts’ subjective estimation of security returns. Regarding the security returns as uncertain variables, the paper introduces a risk curve and develops a mean-risk model. In addition, the crisp form of the model is provided. The presented numerical examples illustrate the application of the mean-risk model and show the disaster result of mistreating uncertain returns as random returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelaziz F. B., Aouni B., Fayedh R. E. (2007) Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research 177: 1811–1823

    Article  MATH  Google Scholar 

  • Carlsson C., Fullér R., Majlender P. (2002) A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems 131: 13–21

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X. W., Liu B. (2010) Existence and uniqueness theorem for uncertain differential equations. Fuzzy Optimization and Decision Making 9: 69–81

    Article  MathSciNet  MATH  Google Scholar 

  • Corazza M., Favaretto D. (2007) On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem. European Journal of Operational Research 176: 1947–1960

    Article  MATH  Google Scholar 

  • Gao X. (2009) Some properties of continuous uncertain measure. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17: 419–426

    Article  MathSciNet  MATH  Google Scholar 

  • Hasuike T., Katagiri H., Ishii H. (2009) Portfolio selection problems with random fuzzy variable returns. Fuzzy Sets and Systems 160: 2579–2596

    Article  MathSciNet  MATH  Google Scholar 

  • Hao F. F., Liu Y. K. (2009) Mean-variance models for portfolio selection with fuzzy random returns. Journal of Applied Mathematics and Computing 30: 9–38

    Article  MathSciNet  MATH  Google Scholar 

  • Hirschberger M., Qi Y., Steuer R. E. (2007) Randomly generatting portfolio-selection covariance matrices with specified distributional characteristics. European Journal of Operational Research 177: 1610–1625

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X. (2007) Two new models for portfolio selection with stochastic returns taking fuzzy information. European Journal of Operational Research 180: 396–405

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X. (2007) Portfolio selection with fuzzy returns. Journal of Intelligent & Fuzzy Systems 18: 383–390

    MATH  Google Scholar 

  • Huang X. (2008) Portfolio selection with a new definition of risk. European Journal of Operational Research 186: 351–357

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X. (2009) A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making 8: 263–281

    Article  MathSciNet  MATH  Google Scholar 

  • Katagiri H., Sakawa M., Ishii H. (2005) A study on fuzzy random portfolio selection problems using possibility and necessity measures. Scientiae Mathematicae Japonocae 65: 361–369

    MathSciNet  Google Scholar 

  • Lacagnina V., Pecorella A. (2006) A stochastic soft constraints fuzzy model for a portfolio selection problem. Fuzzy Sets and Systems 157: 1317–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Li J., Xu J. P. (2009) A novel portfolio selection model in a hybrid uncertain environment. Omega 37: 439–449

    Article  Google Scholar 

  • Li X., Liu B. (2009) Hybrid logic and uncertain logic. Journal of Uncertain Systems 3: 83–94

    Google Scholar 

  • Li X., Zhang Y., Wong H. S., Qin Z. (2009) A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns. Journal of Computational and Applied Mathematics 233: 264–278

    Article  MathSciNet  MATH  Google Scholar 

  • Li X., Qin Z., Kar S. (2010) Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operational Research 202: 239–247

    Article  MATH  Google Scholar 

  • Lin C. C., Liu Y. T. (2008) Genetic algorithm for portfolio selection problems with minimum transaction lots. European Journal of Operational Research 185: 393–404

    Article  MATH  Google Scholar 

  • Liu B. (2007) Uncertainty theory, (2nd Ed.). Springer, Berlin

    MATH  Google Scholar 

  • Liu B. (2008) Fuzzy process, hybrid process and uncertain process. Journal of Uncertain Systems 2: 3–16

    Google Scholar 

  • Liu B. (2009a) Some research problems in uncertainty theory. Journal of Uncertain Systems 3: 3–10

    Google Scholar 

  • Liu B. (2009b) Theory and practice of uncertain programming, (2nd Ed.). Springer, Berlin

    Book  MATH  Google Scholar 

  • Liu B. (2010) Uncertainty theory: A branch of mathematics for modeling human uncertainty. Springer, Berlin

    Google Scholar 

  • Markowitz H. (1952) Portfolio selection. Journal of Finance 7: 77–91

    Article  MATH  Google Scholar 

  • Qin Z., Li X., Ji X. (2009) Portfolio selection based on fuzzy cross-entropy. Journal of Computational and Applied Mathematics 228: 139–149

    Article  MathSciNet  MATH  Google Scholar 

  • Watada J. (1997) Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Mathematical Publication 13: 219–248

    MathSciNet  MATH  Google Scholar 

  • Yan L. (2009) Optimal portfolio selection models with uncertain returns. Modern Applied Science 3: 76–81

    MATH  Google Scholar 

  • Yazenin, A. V. (2007). Possibilistic-probabilistic models and methods of portfolio optimization. In Studies in computational intelligence (Vol. 36, pp. 241–259). Berlin, Heidelberg, Germany: Springer.

  • You C. (2009) Some convergence theorems of uncertain sequences. Mathematical and Computer Modelling 49: 482–487

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L. (1965) Fuzzy sets. Information and Control 8: 338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W. G., Wang Y. L., Chen Z. P., Nie Z. K. (2007) Possibilistic mean-variance models and efficient frontiers for portfolio selection problem. Information Sciences 177: 2787–2801

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X. Mean-risk model for uncertain portfolio selection. Fuzzy Optim Decis Making 10, 71–89 (2011). https://doi.org/10.1007/s10700-010-9094-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-010-9094-x

Keywords

Navigation