Skip to main content
Log in

On the Philosophical Standpoint of a Recent Mathematical Color Perception Model

  • Research
  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The problem of explaining color perception has fascinated painters, philosophers and scientists throughout the history. In many cases, the ideas and discoveries about color perception in one of these categories influenced the others, thus resulting in one of the most remarkable cross-fertilization of human thought. At the end of the nineteenth century, two models stood out as the most convincing ones: Young-Helmholtz’s trichromacy on one side, and Hering’s opponency on the other side. The former was mainly supported by painters and scientists, although with some noticeable exceptions as, e.g., Otto Runge, while the majority of philosophers supported the latter. These two apparently incompatible models were proven to be two complementary parts of the hugely complex chain of events which leads to human color perception. Recently, a rigorous mathematical theory able to incorporate both trichromacy and opponency has been developed thanks to the use of the language and tools of quantum information. In this paper, we discuss the placement of this model within the philosophical theories about color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Auletta, G., Fortunato, M., & Parisi, G. (2009). Quantum mechanics. Cambridge University Press.

    Book  Google Scholar 

  • Averill, E. W. (2005). Toward a projectivist account of color. Journal of Philosophy, 102(5), 217–234.

    Article  Google Scholar 

  • Averill, E., & Hazlett, A. (2011). Color objectivism and color projectivism. Philosophical Psychology, 24(6), 751–765.

    Article  Google Scholar 

  • Baumann, C. (1992). Ewald Herings Gegenfarben [Ewald Hering’s opponent colors. History of an idea]. Geschichte Einer Idee. Ophthalmologe, 89(3), 249–252.

    Google Scholar 

  • Berthier, M., & Provenzi, E. (2019). When geometry meets psycho-physics and quantum mechanics: Modern perspectives on the space of perceived colors. Lecture Notes in Computer Science, p. 621–630, Springer Berlin-Heidelberg.

  • Berthier, M. (2020). Geometry of color perception. Part 2: perceived colors from real quantum states and Hering’s rebit. The Journal of Mathematical Neuroscience, 10(1), 1–25.

    Article  Google Scholar 

  • Berthier, M., Garcin, V., Prencipe, N., & Provenzi, E. (2021). The relativity of color perception. Journal of Mathematical Psychology., 103, 102562.

    Article  Google Scholar 

  • Berthier, M., Prencipe, N., & Provenzi, E. (2022). A quantum information-based refoundation of color perception concepts. SIAM Journal on Imaging Sciences., 15(4), 1944–1976.

    Article  Google Scholar 

  • Berthier, M., & Provenzi, E. (2021a). From Riemannian trichromacy to quantum color opponency via hyperbolicity. Journal of Mathematical Imaging and Vision, 63(6), 681–688.

    Article  Google Scholar 

  • Berthier, M., & Provenzi, E. (2021b). The Quantum Nature of Color Perception: Uncertainty Relations for Chromatic Opposition. Journal of Imaging, 7(2), 40. MDPI.

    Article  Google Scholar 

  • Berthier, M., & Provenzi, E. (2022). Quantum measurement and colour perception: Theory and applications. Proceedings of the Royal Society a., 478(2258), 20210508.

    Article  Google Scholar 

  • Boghossian, P. A., & Velleman, J. D. (1989). Color as a secondary quality. Mind, 98(January), 81–103.

    Article  Google Scholar 

  • Buchsbaum, G., & Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. Royal Society of London B, 220, 89–113.

    Google Scholar 

  • Byrne, A., & Hilbert, D. R. (2003). Color realism and color science. Behavioral and Brain Sciences, 26(1), 3–21.

    Article  Google Scholar 

  • Byrne, A., & Hilbert, D. R. (2021). Objectivist reductionism. In F. Macpherson & D. Brown (Eds.), Routledge Handbook of the Philosophy of Color. London: Routledge.

    Google Scholar 

  • Cohen, J. D. (2009). The red and the real: An essay on color ontology. Oxford University Press UK.

    Book  Google Scholar 

  • Descartes, R. (1637). “Optics”, in Adam, Ch. & Tannery, Paul (1897). Oeuvres de Descartes. J. Vrin.

  • Descartes, R. (1644). [1988], Principles of Philosophy, reprinted in John Cottingham, Robert Stoothoff, Dugald Murdoch, and Anthony Kenny (eds.), Descartes: Selected Philosophical Writings, Cambridge: Cambridge University Press, pp. 160–212.

  • Dirac, PAM. (1930). The principles of quantum mechanics. In No. 27 in international series of monographs on physics (4th ed.). Oxford University Press, Oxford

  • Grassmann, H. (1853). Zur theorie der farbenmischung. Annalen Der Physik, 165(5), 69–84.

    Article  Google Scholar 

  • Guthrie, W. K. C. (1962). A history of greek philosophy. Cambridge University Press.

    Google Scholar 

  • Hardin, C. L. (1984). A new look at color. American Philosophical Quarterly, 21(2), 125–133.

    Google Scholar 

  • Hardin, C. L. (1988). Color for Philosophers: Unweaving the Rainbow. Hackett.

    Google Scholar 

  • Helmholtz, H.V. (1866). Treatise on Physiological Optics, Vol. 1 (1855), Vol. 2 (1860), Vol. 3. Trans. James P. Cocke, Mineola (New York): Dover Publications Inc, 1962 and repr. 2005.

  • Hering, E. (1878). Outlines of a theory of light sense. Trans. by Leo M. Hurvich and Dorothea Jameson, Cambridge (Mass): Harvard University Press, 1872/1964.

  • Hering, E. (1878). Outline of a theory of the light sense, p.49. Translated by Leo M. Hurvich and Dorothea Jameson, Harvard University Press, Cambridge, Massachusetts, 1964.

  • Hilbert, D. R. (1987). Color and color perception: A study in anthropocentric realism. Csli Press.

    Google Scholar 

  • Hyman, J. (2006). The objective eye: Color, form, and reality in the theory of art. University of Chicago Press.

    Book  Google Scholar 

  • Jackson, F., & Pargetter, R. (1987). An objectivist’s guide to subjectivism about color. Revue Internationale De Philosophie, 41(1), 127–141.

    Google Scholar 

  • Kalderon, M. E. (2015). Form without Matter: Empedocles and Aristotle on Color Perception. Oxford University Press.

    Book  Google Scholar 

  • Lewis, D. (1997). Naming the colors. Australasian Journal of Philosophy, 75, 325–342.

    Article  Google Scholar 

  • Locke, J. (1689). An Essay concerning Human Understanding. Edited by R. Woolhouse. London: Penguin.

  • Mahon, B. (2003). The man who changed everything. Wiley.

    Google Scholar 

  • Maund, B. (2006). The illusory theory of colors: An anti-realist theory. Dialectica, 60(3), 245–268.

    Article  Google Scholar 

  • Maund, B. (2011). Colour eliminativism. In L. Nolan (Ed.), Primary and Secondary Qualities: The Historical and Ongoing Debate. Oxford University Press.

    Google Scholar 

  • McLaughlin, B. P. (2003). Color, consciousness, and color consciousness. In Q. Smith & A. Jokic (Eds.), Consciousness: New Philosophical Perspectives (pp. 97–154). Oxford University Press.

    Chapter  Google Scholar 

  • Mermin, D. (1985). Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38(4), 38–47.

    Article  Google Scholar 

  • Newton, I. (1704). Opticks. Pantianos Classics 2017 edition.

  • Noë, R. A. (1994). Wittgenstein, phenomenology and what it makes sense to say. Philosophy and Phenomenological Research, 54(1), 1–42.

    Article  Google Scholar 

  • Pasnau, R. (2007). Democritus and secondary qualities. Archiv Für Geschichte Der Philosophie, 89(2), 99–121.

    Article  Google Scholar 

  • Peruzzi, G., & Roberti, V. (2023). Helmholtz and the geometry of color space: Gestation and development of Helmholtz’s line element. Archive for History of Exact Sciences, 77(2), 201–220.

    Article  Google Scholar 

  • Provenzi, E. (2020). Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space. The Journal of Mathematical Neuroscience., 10(1), 1–19.

    Article  Google Scholar 

  • Provenzi, E., Delon, J., Gousseau, Y., & Mazin, B. (2016). On the second order spatiochromatic structure of natural images. Vision Research, 120, 22–38.

    Article  Google Scholar 

  • Resnikoff, H. L. (1974). Differential geometry and color perception. Journal of Mathematical Biology, 1, 97–131.

    Article  Google Scholar 

  • Russell, B. (1912). The problems of philosophy. Enhanced media 2016.

  • Schopenhauer, A. (2010). On vision and colors. Princeton Architectural Press.

    Google Scholar 

  • Schrödinger, E. (1920). Outline of a theory of colour measurement for daylight vision. Annalen Der Physik., 6(4), 397–456.

    Article  Google Scholar 

  • Turner, S. (1994). In the Eye’s Mind: Vision and the Helmholtz-Hering Controversy. UK: Princeton University Press.

    Book  Google Scholar 

  • Tye, M. (2000). Consciousness, Color, and Content. MIT Press.

    Book  Google Scholar 

  • von Goethe, J. W. (1970). Theory of color. UK: The MIT Press.

    Google Scholar 

  • von Helmholtz, H. (1852). Über die Theorie der zusammengesetzten Farben. Annalen Der Physik, 163(9), 45–66.

    Article  Google Scholar 

  • von Helmholtz, H. (1868). The recent progress of the theory of vision. Trans. by E. Atkinson. New York: D. Appleton and Company, 1873, 127–203.

    Google Scholar 

  • Westphal, J. (2016). Wittgenstein on Color. In H.-J. Glock & J. Hyman (Eds.), A Companion to Wittgenstein. Wiley.

    Google Scholar 

  • Weyl, H. (1934). Mind and nature, selected writings on philosophy, mathematics, and physics. Princeton University Press 2009.

  • Wittgenstein, L. (1929). Some Remarks on Logical Form. Aristotelian Society, Supplementary, 9(1), 162–171.

    Article  Google Scholar 

  • Wittgenstein, L. (1975). Philosophical Remarks. University of Chicago Press.

    Google Scholar 

  • Wittgenstein, L. (1977). Remarks on colour. Blackwell publishing.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and suggestions, which helped us to improve the preliminary version of this paper.

Funding

No funding has been received for this work.

Author information

Authors and Affiliations

Authors

Contributions

F.P., M.B. and E.P. contributed equally to the Abstract, Introduction, section 2.1 to 2.3 and the conclusions. F.P. wrote section 2 and 3.1, M.B. and E.P. wrote section 3.2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Edoardo Provenzi.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelucchi, F., Berthier, M. & Provenzi, E. On the Philosophical Standpoint of a Recent Mathematical Color Perception Model. Found Sci (2024). https://doi.org/10.1007/s10699-024-09951-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10699-024-09951-2

Keywords

Navigation