Skip to main content
Log in

Is a Cognitive Revolution in Theoretical Biology Underway?

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The foundations of biology have been a topic of debate for the past few decades. The traditional perspective of the Modern Synthesis, which portrays organisms as passive entities with a limited explanatory role in evolutionary theory, is giving way to a new paradigm where organisms are recognized as active agents, actively shaping their own phenotypic traits for adaptive goals. Within this context, this article raises the question of whether contemporary biological theory is undergoing a cognitive revolution. This inquiry can be approached in two ways: from a theoretical standpoint, exploring the centrality of the cognitive sciences in current theoretical biology; and from a historical perspective, examining the resemblance between the current state of theoretical biology and the Cognitive Revolution of the mid-twentieth century. Both inquiries yield affirmative answers, though important nuances will be emphasized. The cognitive sciences’ explanatory framework is employed to elucidate the agentic characteristics of organisms, establishing a clear parallelism between the Cognitive Revolution and the present state of theoretical biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Notes

  1. It is good to remember that Darwin did not postulate this genocentric view of natural selection, first because the notion of “genes” was introduced in 1909 by Wilhelm Johannsen, and second because Darwin himself accepted Lamarckian inheritance of some kinds, particularly in his 6th edition of Origin of Species. In this way, the theory of natural selection was developed into the Genetic Theory of Evolution by Neo-Darwinism, but the genocentric view is not a demand of natural selection theory: natural selection can be embedded in a non-gene-centered position about inheritance, variation, and fitness.

References

  • Ågren, J. A. (2021). The gene’s-eye view of evolution. Oxford University Press.

    Book  Google Scholar 

  • Amos, M. (Ed.). (2004). Cellular computing. Oxford University Press.

    Google Scholar 

  • Amundson, R. (1990). Doctor Dennett and Doctor Pangloss: Perfection and selection in biology and psychology. Behavioral and Brain Sciences, 13(3), 577–581. https://doi.org/10.1017/S0140525X00080237

    Article  Google Scholar 

  • Auletta, G. (2011). Cognitive biology: Dealing with information from bacteria to minds. Oxford University Press.

    Book  Google Scholar 

  • Baedke, J. (2018). O organism, where art thou? Old and new challenges for organism-centered biology. Journal of the History of Biology, 52(2), 293–324. https://doi.org/10.1007/s10739-018-9549-4

    Article  Google Scholar 

  • Baluška, F., & Levin, M. (2016). On having no head: Cognition throughout biological systems. Frontiers in Psychology, 7, 902.

    Article  Google Scholar 

  • Baluška, F., Reber, A. S., & Miller, W. B., Jr. (2022). Cellular sentience as the primary source of biological order and evolution. Bio Systems, 218, 104694.

    Article  Google Scholar 

  • Barandiaran, X. (2008). Mental life: A naturalized approach to the autonomy of cognitive agents. Unpublished PhD Thesis. University of the Basque Country, Spain

  • Barandiaran, X., Di Paolo, E., & Rohde, M. (2009). Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adaptive Behavior, 17(5), 367–386. https://doi.org/10.1177/1059712309343819

    Article  Google Scholar 

  • Bateson, P. (2005). The return of the whole organism. Journal of Biosciences, 30(1), 31–39. https://doi.org/10.1007/bf02705148

    Article  Google Scholar 

  • Bateson, P., & Gluckman, P. (2011). Plasticity, robustness, development and evolution. Cambridge University Press.

    Book  Google Scholar 

  • Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist’s challenge in cognitive science. Cognitive Science, 22(3), 295–317.

    Article  Google Scholar 

  • Bermúdez, J. L. (2014). Cognitive science: An introduction to the science of the mind. Cambridge University Press.

    Book  Google Scholar 

  • Boden, M. A. (2008). Mind as machine: A history of cognitive science. Oxford University Press.

    Google Scholar 

  • Braddon-Mitchell, D., & Jackson, F. (2007). Philosophy of mind and cognition (2nd ed.). Blackwell.

    Google Scholar 

  • Bray, D. (2009). Wetware: A computer in every living cell. Yale University Press.

    Google Scholar 

  • Brenner, E., Stahlberg, R., Mancuso, S., Vivanco, J., Baluška, F., & Van Volkenburgh, E. (2006). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11(8), 413–419.

    Article  Google Scholar 

  • Calvo, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19(3), 155–171.

    Article  Google Scholar 

  • Calvo, P., Sahi, V. P., & Trewavas, A. (2017). Are plants sentient? Plant, Cell & Environment, 40(11), 2858–2869.

    Article  Google Scholar 

  • Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schilpp (Ed.), The philosophy of Karl R. Popper (pp. 412–463). LaSalle, IL: Open Court.

    Google Scholar 

  • Crick, F. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.

    Google Scholar 

  • Damasio, A. (2019). The strange order of things: Life, feeling, and the making of cultures. Vintage.

    Google Scholar 

  • Dawkins, R. (1982). The extended phenotype. Oxford University Press.

    Google Scholar 

  • De Jesus, P. (2016). Autopoietic enactivism, phenomenology and the deep continuity between life and mind. Phenomenology and the Cognitive Sciences, 15(2016), 265–289.

    Article  Google Scholar 

  • Dennett, D. & Levin, M. (2020). Cognition all the way down. Retrieved January 17, 2024, from https://aeon.co/essays/how-to-understand-cells-tissues-and-organisms-as-agents-with-agendas

  • Dennett, D. (2017). From bacteria to bach and back: The evolution of minds. W. W. Norton & Company.

    Google Scholar 

  • Di Paolo, E., Buhrmann, T., & Barandiaran, X. (2017). Sensorimotor life: An enactive proposal. Oxford University Press.

    Book  Google Scholar 

  • Dobzhansky, T. (1951). Genetics and the origin of species. Columbia University Press.

    Google Scholar 

  • Dodig-Crnkovic, G. (2014). Modeling life as cognitive info-computation. In A. Beckmann (Ed.), Computability in Europe. Berlin: Springer.

    Google Scholar 

  • Feiten, T. E. (2020). Mind after Uexküll: A foray into the worlds of ecological psychologists and enactivists. Frontiers in Psychology, 11, 480.

    Article  Google Scholar 

  • Fodor, J., & Piattelli-Palmarini, M. (2010). What Darwin got wrong. Farrar, Straus and Giroux.

    Google Scholar 

  • Ford, B. J. (2017). Cellular intelligence: Microphenomenology and the realities of being. Progress in Biophysics and Molecular Biology, 131, 273–287.

    Article  Google Scholar 

  • Fresco, N. (2022). Information in explaining cognition: How to evaluate it? Philosophies, 7(28), 1–19.

    Google Scholar 

  • Friedenberg, J., Gordon, S., & Michael, J. S. (2006). Cognitive science: An introduction to the study of mind. Sage Publications.

    Google Scholar 

  • Froese, T., & Di Paolo, E. (2011). The enactive approach: Theoretical sketches from cell to society. Pragmatics & Cognition, 19(1), 1–36.

    Article  Google Scholar 

  • Gefaell, J., & Saborido, C. (2023). Incommensurability in evolutionary biology: The extended evolutionary synthesis controversy. In J. M. Viejo & M. Sanjuán (Eds.), Life and mind: New directions in the philosophy of biology and cognitive sciences (pp. 165–183). Springer International Publishing.

    Chapter  Google Scholar 

  • Gilbert, S., & Sarkar, S. (2000). Embracing complexity: Organicism for the 21st century. Developmental Dynamics, 219(1), 1–9.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford University Press.

    Book  Google Scholar 

  • Godfrey-Smith, P. (2016). Mind, matter, and metabolism. The Journal of Philosophy, 113(10), 481–506. https://doi.org/10.5840/jphil20161131034

    Article  Google Scholar 

  • Godfrey-Smith, P. (2017). The subject as cause and effect of evolution. Interface Focus, 7(5), 20170022.

    Article  Google Scholar 

  • Goodwin, B. (1994). How the leopard changed its spots: The evolution of complexity. Weidenfeld & Nicholson.

    Google Scholar 

  • Griffiths, P., & Stotz, K. (2013). Genetics and philosophy. An introduction. Cambridge University Press.

    Book  Google Scholar 

  • Hamburger, V. (1980). Embryology and the modern synthesis in evolutionary theory. In E. Mayr & W. Provine (Eds.), The evolutionary synthesis: Perspectives on the unification of biology (pp. 97–112). Harvard University Press.

    Chapter  Google Scholar 

  • Heras-Escribano, M. (2019). The philosophy of affordances. Palgrave Macmillan.

    Book  Google Scholar 

  • Heras-Escribano, M., & De Jesus, P. (2018). Biosemiotics, the extended synthesis, and ecological information: Making sense of the organism-environment relation at the cognitive level. Biosemiotics, 11, 245–262.

    Article  Google Scholar 

  • Huebner, B., & Schulkin, J. (2022). Biological cognition. Cambridge University Press.

    Book  Google Scholar 

  • Hutto, D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. MIT Press.

    Google Scholar 

  • Jablonka, E., & Lamb, M. (2020). Inheritance systems and the extended evolutionary synthesis. Cambridge University Press.

    Book  Google Scholar 

  • Miller, W. B. (2018). Biological information systems: Evolution as cognition-based information management. Progress in Biophysics and Molecular Biology, 134, 1–26.

    Article  Google Scholar 

  • Kauffman, S. (2000). Investigations. Oxford University Press.

    Book  Google Scholar 

  • Kauffman, S., & Clayton, P. (2006). On emergence, agency, and organization. Biology and Philosophy, 21(2006), 501–521.

    Article  Google Scholar 

  • Keller, E. F. (2002). The century of the gene. Harvard University Press.

    Google Scholar 

  • Kováč, L. (2006). Life, chemistry and cognition: Conceiving life as knowledge embodied in sentient chemical systems might provide new insights into the nature of cognition. EMBO Reports, 7(6), 562–566. https://doi.org/10.1038/sj.embor.7400717

    Article  Google Scholar 

  • Lahoz-Beltra, R., Navarro, J., & Marijuán, P. C. (2014). Bacterial computing: A form of natural computing and its applications. Frontiers in Microbiology, 5, 101.

    Article  Google Scholar 

  • Laland, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2013). More on how and why: A response to commentaries. Biology & Philosophy, 28(5), 793–810.

    Article  Google Scholar 

  • Levin, M., Keijzer, F., Lyon, P., & Arendt, D. (eds.) (2021). Basal cognition: Multicellularity, neurons and the cognitive lens. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1821), 1-132.

  • Lewontin, R. (2010). Not so natural selection. Retrieved January 17, 2024, from https://www.nybooks.com/articles/2010/05/27/not-so-natural-selection/

  • Lewontin, R. (1974). The genetic basis of evolutionary change. Columbia University Press.

    Google Scholar 

  • Lewontin, R. C. (1983). The organism as the subject and object of evolution. Scientia, Rivista Internazionale Di Sintesi Scientifica, 118, 65–95.

    Google Scholar 

  • Lewontin, R. C. (2000). The triple helix: Gene, organism, and environment. Harvard University Press.

    Google Scholar 

  • Lewontin, R., & Levins, R. (1997). Organism and environment. Capitalism Nature Socialism, 2, 95–98.

    Article  Google Scholar 

  • Lyon, P., Keijzer, F., Arendt, D., & Levin, M. (eds.) (2021). Basal cognition: Conceptual tools and the view from the single cell. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1820), 1–108.

  • Lyon, P. (2015). The cognitive cell: Bacterial behavior reconsidered. Frontiers in Microbiology, 6(264), 1–18. https://doi.org/10.3389/fmicb.2015.00264

    Article  Google Scholar 

  • Marder, M. (2013). Plant-thinking: A philosophy of vegetal life. Columbia University Press.

    Google Scholar 

  • Maturana, H., & Varela, F. (1991). Autopoiesis and cognition: The realization of the living. D. Reidel Publishing Company.

    Google Scholar 

  • Michel, G., & Moore, C. (1995). Developmental psychobiology: An interdisciplinary science. MIT Press.

    Book  Google Scholar 

  • Miller, G. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7(3), 141–144.

    Article  Google Scholar 

  • Miller, W. B., Jr., Baluška, F., & Reber, A. S. (2023). A revised central dogma for the 21st century: All biology is cognitive information processing. Progress in Biophysics and Molecular Biology, 182, 34–48.

    Article  Google Scholar 

  • Moczek, A. P., & Sultan, S. E. (eds.) (2023). Special issue: Agency in living systems. Evolution & Development, 25(6), 329–469.

  • Moss, L. (2003). What genes can’t do. The MIT Press.

    Google Scholar 

  • Nicholson, D. (2014). The return of the organism as a fundamental explanatory concept in biology. Philosophy Compass, 9(5), 347–359. https://doi.org/10.1111/phc3.12128

    Article  Google Scholar 

  • Okasha, S. (2023). The concept of agent in biology: Motivations and meanings. Biological Theory, 18(2), 1–5.

  • Oyama, S., Gray, R., & Griffiths, P. (Eds.). (2001). Cycles of contingency: Developmental systems and evolution. MIT Press.

  • Prusinkiewicz, P., & Runions, A. (2012). Computational models of plant development and form. New Phytologist, 193(3), 549–569.

    Article  Google Scholar 

  • Rama, T. (2021). Biosemiotics at the bridge between Eco-Devo and representational theories of mind. Rivista Italiana Di Filosofia Del Linguaggio, 15(2), 59–92. https://doi.org/10.4396/2021203

    Article  Google Scholar 

  • Rama, T. (2022). Agential teleosemantics. Universidad Autónoma de Barcelona.

    Google Scholar 

  • Rama, T. (2023). Evolutionary causation and teleosemantics. In J. M. Viejo & M. Sanjuan (Eds.), Life and mind: New directions in the philosophy of biology and cognitive sciences (pp. 301–329). Springer International Publishing.

    Chapter  Google Scholar 

  • Rama, T. (forthcoming). The explanatory role of Umwelt in evolutionary theory: Introducing von Baer’s reflections on teleological development. Biosemiotics

  • Reber, A. S., Baluška, F., & Miller, W. B. Jr., (2024). The Sentient Cell The Cellular Foundations of Consciousness. Oxford: Oxford University Press.

  • Robert, J. S. (2004). Embryology, epigenesis and evolution: Taking development seriously. Cambridge University Press.

    Book  Google Scholar 

  • Rossi, E. L. (2002). Psychobiology of gene expression. WW Norton & Company.

    Google Scholar 

  • Schulte, P. (2023). Mental content. Cambridge University Press.

    Book  Google Scholar 

  • Segundo-Ortin, M., & Calvo, P. (2022). Consciousness and cognition in plants. Wiley Interdisciplinary Reviews: Cognitive Science, 13(2), 1578.

    Google Scholar 

  • Shapiro, J. (2007). Bacteria are small but not stupid: Cognition, natural genetic engineering and socio-bacteriology. Studies in History and Philosophy of Science Part c: Studies in History and Philosophy of Biological and Biomedical Sciences, 38(4), 807–819.

    Article  Google Scholar 

  • Shapiro, J. (2011). Evolution: A view from the 21st century. FT Press.

    Google Scholar 

  • Shapiro, J. (2021). All living cells are cognitive. Biochemical and Biophysical Research Communications, 564, 134–149.

    Article  Google Scholar 

  • Shea, N. (2007). Representation in the genome and in other inheritance systems. Biology & Philosophy, 22(3), 313–331. https://doi.org/10.1007/s10539-006-9046-6

    Article  Google Scholar 

  • Skinner, B. F. (1984). The phylogeny and ontogeny of behavior. Behavioral and Brain Sciences, 7(4), 669–677.

    Article  Google Scholar 

  • Sultan, S. (2015). Organism and environment: Ecological development, niche construction, and adaptation. Oxford University Press.

    Book  Google Scholar 

  • Sultan, S., Moczek, A., & Walsh, D. (2022). Bridging the explanatory gaps: What can we learn from a biological agency perspective? BioEssays, 44(1), 2100185.

    Article  Google Scholar 

  • Thompson, E. (2010). Mind in life: Biology, phenomenology, and the sciences of mind. Harvard University Press.

    Google Scholar 

  • Trewavas, A. (2014). Plant behaviour and intelligence. Oxford University Press.

    Book  Google Scholar 

  • Tronick, E., & Hunter, R. G. (2016). Waddington, dynamic systems, and epigenetics. Frontiers in Behavioral Neuroscience, 10, 107.

    Article  Google Scholar 

  • Van Duijn, M., Keijzer, F., & Franken, D. (2006). Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adaptive Behavior, 14(2), 157–170.

    Article  Google Scholar 

  • Walsh, D. (2013). The affordance landscape: The spatial metaphors of evolution. In G. Barker, E. Desjardins, & T. Pearce (Eds.), Entangled life. Organism and environment in the biological and social sciences (pp. 213–236). Dordrecht: Springer.

    Google Scholar 

  • Walsh, D. (2015). Organisms, agency, and evolution. Cambridge University Press.

    Book  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

    Book  Google Scholar 

  • Wheeler, M. (2011). Mind in life or life in mind? Making sense of deep continuity. Journal of Consciousness Studies, 18(5–6), 148–168.

    Google Scholar 

  • Wiese, W., & Friston, K. (2021). Examining the continuity between life and mind: Is there a continuity between autopoietic intentionality and representationality? Philosophies, 6(1), 18. https://doi.org/10.3390/philosophies6010018

    Article  Google Scholar 

  • Withagen, R., & van Wermeskerken, M. (2010). The role of affordances in the evolutionary process reconsidered: A niche construction perspective. Theory & Psychology, 20(4), 489–510.

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Sergio Balari for the discussion of the ideas presented here. The research done here received the support of the National Agency of Investigation and Innovation (Uruguay) through grant PD_NAC_2023_1_176930 and the Sectoral Comision of Scientific Investigation (Uruguay) through grant 22520220100257UD. I also acknowledge funding from grant FFI2017-87699-P for project DALiV and funding from grant PID2019-104576GB-I00 for project Outonomy funded by MCIN/AEI/10.13039/501100011033.

Funding

National Agency of Investigation and Innovation (Uruguay) through grant PD_NAC_2023_1_176930 and the Sectoral Comision of Scientific Investigation (Uruguay) through grant 22520220100257UD.

Author information

Authors and Affiliations

Authors

Contributions

TR did all the work related to the production of this paper.

Corresponding author

Correspondence to Tiago Rama.

Ethics declarations

Coflict of interest

Not applicable.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama, T. Is a Cognitive Revolution in Theoretical Biology Underway?. Found Sci (2024). https://doi.org/10.1007/s10699-024-09950-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10699-024-09950-3

Keywords

Navigation