Skip to main content
Log in

A Geometric Milieu Inside the Brain

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The brain, rather than being homogeneous, displays an almost infinite topological genus, since it is punctured with a high number of “cavities”. We might think to the brain as a sponge equipped with countless, uniformly placed, holes. Here we show how these holes, termed topological vortexes, stand for nesting, non-concentric brain signal cycles resulting from the activity of inhibitory neurons. Such inhibitory spike activity is inversely correlated with its counterpart, i.e., the excitatory spike activity propagating throughout the whole brain tissue. We illustrate how Pascal’s triangles and linear and nonlinear arithmetic octahedrons are capable of describing the three-dimensional random walks generated by the inhbitory/excitatory activity of the nervous tissue. In case of nonlinear 3D paths, the trajectories of excitatory spiking oscillations can be depicted as the operation of filling the numbers of octahedrons in the form of “islands of numbers”: this leads to excitatory neuronal assemblies, spaced out by empty areas of inhibitory neuronal assemblies. These mathematical procedures allow us to describe the topology of a brain of infinite genus, to represent inhibitory neurons in terms of Betti numbers and to highlight how spike diffusion in neural tissues is generated by the random activation of tiny groups of excitatory neurons. Our approach suggests the existence of a strong mathematical background subtending the intricate oscillatory activity of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, M. Z., & Peters, J. F. (2019). Proximity induced by order relations (pp. 1–22). arXiv:1903.05532v2

  • Almgren, F. J., Jr., & Thurston, W. P. (1977). Examples of unknotted curves which bound only surfaces of high genus within their convex hulls. Annals of Mathematics. Second Series, 105(3), 527–538. https://doi.org/10.2307/1970922

    Article  Google Scholar 

  • Brothers, H. J. (2012). Finding e in Pascal’s triangle. Mathematics Magazine, 85, 51. https://doi.org/10.4169/math.mag.85.1.51

    Article  Google Scholar 

  • Don, A. P., Peters, J. F., Ramanna, S., & Tozzi, A. (2020). Topological view of flows inside the BOLD spontaneous activity of the human brain. Frontiers in Computational Neuroscience. https://doi.org/10.3389/fncom.2020.00034

    Article  Google Scholar 

  • Edwards, A. W. F. (2013). The arithmetical triangle. In Wilson, R., & Watkins, J.-J. (Eds.), Combinatorics: Ancient and modern (pp. 166–180). Oxford University Press.

  • Fedotov, S., & Korabel, N. (2015). Nonlinear and non-Markovian random walk: self-organized anomaly. arXiv:1505.02625v1.

  • Feldman, J., Knörrer, H., & Trubowitz, E. (1996). Infinite genus Riemann surfaces. Toronto 1995. In J. B. Carrell, & R. Murty (Eds.), Canadian Mathematical Society/Société mathématique du Canada 1945–1995. Volume/Tome 3 (pp. 91–112). Canadian Mathematical Society.

  • Fraiman, D., & Chialvo, D. R. (2012). What kind of noise is brain noise: Anomalous scaling behavior of the resting brain activity fluctuations. Frontiers in Physiology. https://doi.org/10.3389/fphys.2012.00307

    Article  Google Scholar 

  • Friston, K., & Ao, P. (2012). Free energy, value, and attractors. Computational and Mathematical Methods in Medicine, 2012, 937860. https://doi.org/10.1155/2012/937860

    Article  Google Scholar 

  • Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17), 4535–4545

    Article  Google Scholar 

  • Hemberger, M., Shein-Idelson, M., Pammer, L., & Laurent, G. (2019). Reliable sequential activation of neural assemblies by single pyramidal cells in a three-layered cortex. Neuron. https://doi.org/10.1016/j.neuron.2019.07.017

    Article  Google Scholar 

  • Hodge, R. D., Bakken, T. E., Miller, J. A., Smith, K. A., Barkan, E. R., et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature, 573(7772), 61–68. https://doi.org/10.1038/s41586-019-1506-7

    Article  Google Scholar 

  • Hore, P. J. (1983). Solvent suppression in Fourier transform nuclear magnetic resonance. Journal of Magnetic Resonance, 55(2), 283–300. https://doi.org/10.1016/0022-2364(83)90240-8

    Article  Google Scholar 

  • Kaczynski, T., Mischaikov, K., & Mrozek, M. (2004). Computational homology. Springer. ISBN 0-387-40853-3

  • Kavalali, E. T., Chung, C., Khvotchev, M., Leitz, J., Nosyreva, E., Raingo, J., & Ramirez, D. M. (2011). Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiology (bethesda, Md.), 26(1), 45–53. https://doi.org/10.1152/physiol.00040.2010

    Article  Google Scholar 

  • Klatt, M. A., Lovrić, J., Chen, D., Kapfer, S. C., Schaller, F. M., et al. (2019). Universal hidden order in amorphous cellular geometries. Nature Communications, 10, 811

    Article  Google Scholar 

  • Klein, F. (1956). About so-called non-Euclidean geometry. About the geometry bases. Collection of classical works on Lobachevsky’s geometry and development of its ideas. Gosizdat.

    Google Scholar 

  • Kolmogorov, A., Zhurbenko, I., & Prokhorov, A. (1995). Introduction to the theory of probability. Nauka.

    Google Scholar 

  • Krueger, C., & Garvan, C. (2014). Emergence and retention of learning in early fetal development. Infant Behavior & Development, 37(2), 162–173. https://doi.org/10.1016/j.infbeh.2013.12.007

    Article  Google Scholar 

  • Manschot, J., Pioline, B., & Sen, A. (2012). From black holes to quivers. High Energy Physics. https://doi.org/10.1007/JHEP11(2012)023

    Article  Google Scholar 

  • Munkres, J. R. (1984). Elements of algebaic topology. Perseus Publishing.

    Google Scholar 

  • Peters, J. F. (2016). Computational proximity. Excursions in the topology of digital images. Springer. ISBN 978-3-379-30260-7, Zbl1382-68008.

  • Peters, J. F. (2018). Proximal vortex cycles and vortex nerve structures. Non-concentric, nesting, possibly overlapping homology cell complexes. Journal of Mathematical Sciences and Modelling, 1(2), 80–85. ISSN 2636-8692.

  • Peters, J. F. (2020). Computational geometry, topology and physics. Shape complexes, optical vortex nerves and proximities in digital images. Springer. ISBN 979-3-030-23191-1, Zbl 07098311.

  • Sarkar, J., & Maiti, S. I. (2017). Symmetric random walks on regular tetrahedra, octahedra, and hexahedra. Calcutta Statistical Association Bulletin, 69(1), 110–128

    Article  Google Scholar 

  • Sengupta, B., Laughlin, S. B., & Niven, J. E. (2013). Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency. PLoS Computational Biology, 9, e1003263

    Article  Google Scholar 

  • Sengupta, B., & Stemmler, M. B. (2014). Power consumption during neuronal computation. Proceedings of the IEEE, 102, 738–750

    Article  Google Scholar 

  • Soldatov, R., Kaucka, M., Kastriti, M. E., Petersen, J., Chontorotzea, T., et al. (2019). Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 364(6444), eaas9536. https://doi.org/10.1126/science.aas9536

    Article  Google Scholar 

  • Sommerfeld, A. (1973). Cognition ways in physics. Collection of papers, p. 157. Editor: Smorodinsky, J. Moscow: Nauka. (Klein, Riemann und die mathematische Physik. Naturwiss (1919), 7.

  • Telley, L., Agirman, G., Prados, J., Amberg, N., Fièvre, S., et al. (2019). Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science, 364(6440), eaav2522. https://doi.org/10.1126/science.aav2522

    Article  Google Scholar 

  • Tognoli, E., & Kelso, J. S. (2013). On the brain’s dynamical complexity: Coupling and causal influences across spatiotemporal scales. Advances in Cognitive Neurodynamics (III), (Iii), 259–265. https://doi.org/10.1007/978-94-007-4792-0

  • Tozzi, A., & Peters, J. F. (2019). Entropy balance in the expanding universe: A novel perspective. Entropy, 21(4), 406. https://doi.org/10.3390/e21040406

    Article  Google Scholar 

  • Tozzi, A., Peters, J. F., Fingelkurts, A. A., Fingelkurts, A. A., & Marijuán, P. C. (2017). Topodynamics of metastable brains. Physics of Life Reviews, 21, 1–20. https://doi.org/10.1016/j.plrev.2017.03.001

    Article  Google Scholar 

  • Tozzi, A., Zare, M., & Benasich, A. A. (2016). New perspectives on spontaneous brain activity: Dynamic networks and energy matter. Frontiers in Human Neuroscience, 10, 247. https://doi.org/10.3389/fnhum.2016.00247

    Article  Google Scholar 

  • Tripathy, R., Leca, I., van Dijk, T., Weiss, J., van Bon, B. W., et al. (2018). Mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations. Neuron, 100(6), 1354–1368. https://doi.org/10.1016/j.neuron.2018.10.044

    Article  Google Scholar 

  • Trujillo, C. A., Gao, R., Negraes, P. D., Yeo, G. W., Voytek, B., & Muotri, A. R. (2019). Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 25(4), 558-569.E7. https://doi.org/10.1016/j.stem.2019.08.002

    Article  Google Scholar 

  • Velasco, S., Kedaigle, A. J., Simmons, S. K., Nash, A., Rocha, M., et al. (2019). Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 570, 523–527

    Article  Google Scholar 

  • Wang, R., Fan, Y., & Wu, Y. (2019). Spontaneous electromagnetic induction promotes the formation of economical neuronal network structure via self-organization process. Science and Reports, 9(1), 9698. https://doi.org/10.1038/s41598-019-46104-z

    Article  Google Scholar 

  • Wang, Y., Wang, R., & Zhu, Y. (2017). Optimal path-finding through mental exploration based on neural energy field gradients. Cognitive Neurodynamics, 11(1), 99–111. https://doi.org/10.1007/s11571-016-9412-2

    Article  Google Scholar 

  • Weyl, H. (1955). The concept of a Riemann surface. By MacLane, G.R., Dover Pub. Inc., NY.

    Google Scholar 

  • Xu, X., & Wang, R. (2014). Neurodynamics of up and down transitions in a single neuron. Cognitive Neurodynamics, 8(6), 509–515. https://doi.org/10.1007/s11571-014-9298-9

    Article  Google Scholar 

  • Xue, M., Atallah, B. V., & Scannziani, M. (2014). Equalizing excitation-inhibition ratios across visual cortical neurons. Nature, 511, 596–600

    Article  Google Scholar 

  • Yurkin, A. (1995). System of rays in lasers and a new feasibility of light coherence control. Optics Communications, 114, 393

    Article  Google Scholar 

  • Yurkin, A. (2013). New binomial and new view on light theory. About one new universal descriptive geometric model. Lambert Academic Publishing. ISBN 978-3-659-38404-2.

  • Yurkin, A. (2016). On descriptive geometrical interpretation of the principle of Pauli, elements of the table of Mendeleyev and the Newtonian laminar current of liquid. Progress in Physics, 12, 149–169

    Google Scholar 

  • Yurkin, A. (2018). And where are fluctuations in quantum-mechanical wave function? Advances in Theoretical & Computational Physics, 1(1.1-7).

  • Yurkin, A. (2019a). Computing stiks against random walk. Advances in Theoretical & Computational Physics, 2(1.1-6).

  • Yurkin, A. (2019b). Fractions of arithmetic octahedron and random walk. International Journal of Engineering Technology Research Management (iJETRM), 3(5).

  • Yurkin, A. (2019c). Visual models and classification of 1D, 2D, and 3D random walk. European Journal of Advances in Engineering and Technology (EJAET), 6(2), 42–53

    Google Scholar 

  • Yurkin, A., Peters, J. F., Tozzi, A. (2018). A novel belt model of the atom, compatible with quantum dynamics. Journal of Scientific and Engineering Research, 5(7):413–419. www.jsaer.com.

  • Yuste, R., McLean, J. N., Smith, J., & Lansner, A. (2005). The cortex as a central pattern generator. Nature Reviews Neuroscience, 6, 477–483. https://doi.org/10.1038/nrn1686

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the Authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All the Authors equally contributed to: study concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content, statistical analysis, obtained funding, administrative, technical, and material support, study supervision.

Corresponding author

Correspondence to Arturo Tozzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors warrant that the article is original, does not infringe on any copyright or other proprietary right of any third part, is not under consideration by another journal, and has not been previously published.

Human rights

This research does not contain any studies with human participants or animals performed by any of the Authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozzi, A., Yurkin, A. & Peters, J.F. A Geometric Milieu Inside the Brain. Found Sci 27, 1477–1488 (2022). https://doi.org/10.1007/s10699-021-09798-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-021-09798-x

Keywords

Navigation