Skip to main content
Log in

Quantum Bose–Einstein Statistics for Indistinguishable Concepts in Human Language

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We investigate the hypothesis that within a combination of a ‘number concept’ plus a ‘substantive concept’, such as ‘eleven animals’, the identity and indistinguishability present on the level of the concepts, i.e., all eleven animals are identical and indistinguishable, gives rise to a statistical structure of the Bose–Einstein type similar to how Bose–Einstein statistics is present for identical and indistinguishable quantum particles. We proceed by identifying evidence for this hypothesis by extracting the statistical data from the World-Wide-Web utilizing the Google Search tool. By using the Kullback–Leibler divergence method, we then compare the obtained distribution with the Maxwell–Boltzmann as well as with the Bose–Einstein distributions and show that the Bose–Einstein’s provides a better fit as compared to the Maxwell–Boltzmann’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts, D. (2009a). Quantum structure in cognition. Journal of Mathematical Psychology, 53, 314–348.

    Article  Google Scholar 

  • Aerts, D., Aerts Arguëlles, J., Beltran, L., Beltran, L., Distrito, I., Sassoli de Bianchi, M., et al. (2018). Towards a quantum world wide web. Theoretical Computer Science, 752, 116–131.

    Article  Google Scholar 

  • Aerts, D., & Beltran, L. (2020). Quantum structure in cognition: Human language as a boson gas of entangled words. Foundations of Science, 25, 755–802. https://doi.org/10.1007/s10699-019-09633-4.

    Article  Google Scholar 

  • Aerts, D., Broekaert, J., Gabora, L., & Sozzo, S. (2013). Quantum structure and human thought. Behavioral and Brain Sciences, 36, 274–276.

    Article  Google Scholar 

  • Aerts, D., Gabora, L., & Sozzo, S. (2013). Concepts and their dynamics: A quantum theoretic modeling of human thought. Topics in Cognitive Science, 5, 737–772.

    Article  Google Scholar 

  • Aerts, D., Haven, E., & Sozzo, S. (2018). A proposal to extend expected utility in a quantum probabilistic framework. Economic Theory, 65, 1079–1109.

    Article  Google Scholar 

  • Aerts D., Sassoli de Bianchi M., Sozzo S., & Veloz T. (2019). Modeling meaning associated with documental entities: Introducing the Brussels quantum approach. In D. Aerts, A. Khrennikov, M. Melucci & B. Toni (Eds.), Quantum-like models for information retrieval and decision-making. Springer. https://doi.org/10.1007/978-3-030-25913-6_1

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). The quantum nature of identity in human thought: Bose–Einstein statistics for conceptual indistinguishability. International Journal of Theoretical Physics, 54, 4430–4443. https://doi.org/10.1007/s10773-015-2620-4.

    Article  Google Scholar 

  • Aerts Arguëlles, J. (2018). The heart of an image: Quantum superposition and entanglement in visual perception. Foundations of Science, 23, 757–778.

    Article  Google Scholar 

  • Boltzmann, L. (1872). Weitere studien Über das Wärmegleichgewicht Unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien , mathematisch-naturwissenschaftliche Classe (Vol. 66, pp. 275–370).

  • Borrelli, A. (2009). Bose–Einstein statistics. In D. Greenberger, K. Hentschel, & F. Weinert (Eds.), Compendium of quantum physics. Springer. https://doi.org/10.1007/978-3-540-70626-7_22

  • Brownlee, J. (2020). How to calculate the KL divergence for machine learning. Retrieved 8 October 2020, from https://machinelearningmastery.com/divergence-between-probability-distributions/

  • Bose, E. (1924). Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik, 26, 178–181. https://doi.org/10.1007/BF01327326.

    Article  Google Scholar 

  • Busemeyer, J., Pothos, E., Franco, R., & Trueblood, J. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118, 193–218. https://doi.org/10.1037/a0022542.

    Article  Google Scholar 

  • Busemeyer, J., & Bruza, P. (2012). Quantum models of cognition and decision. Cambridge University Press.

    Book  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., & Negri, E. (2015). A quantum approach to vagueness and to the semantics of music. International Journal of Theoretical Physics, 54, 4546–4556.

    Article  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., Leporini, R., Negri, E., & Sergioli, G. (2015). Quantum information, cognition, and music. Frontiers in Psychology, 6, 1583.

    Article  Google Scholar 

  • Dyson, F. J., & Lenard, A. (1967). Stability of matter. I. Journal of Mathematical Physics, 8, 423–434.

    Article  Google Scholar 

  • Haven, E., & Khrennikov, A. Y. (2013). Quantum social science. Cambridge University Press.

    Book  Google Scholar 

  • Khrennikov, A. (2010). Ubiquitous quantum structure. Springer.

    Book  Google Scholar 

  • Kvam, P., Pleskac, T., Yu, S., & Busemeyer, J. (2015). Interference effects of choice on confidence. Proceedings of the National Academy of Science of the USA, 112, 10645–10650.

    Article  Google Scholar 

  • Lenard, A. & Dyson, F. J. (1968). Stability of matter. II. Journal of Mathematical Physics , 9, 698–711.

  • Li, S. (2006). Semiconductor statistics. In S. Li (Ed.), Semiconductor physical electronics. Springer. https://doi.org/10.1007/0-387-37766-2_3

  • Lieb, E. H. (1976). The stability of matter. Reviews of Modern Physics, 48, 553–569.

    Article  Google Scholar 

  • Fierz, M. (1939). “Uber die relativistische Theorie kr’ftefreier Teilchen mit beliebigem Spin. Helvetica Physica Acta, 12, 3–37. https://doi.org/10.5169/seals-110930.

  • Maxwell, J. C. (1860a). Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 19, 19–32.

    Article  Google Scholar 

  • Maxwell, J. C. (1860b). Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 20, 21–37.

    Article  Google Scholar 

  • Melucci, M. (2015). Introduction to information retrieval and quantum mechanics. Springer.

    Book  Google Scholar 

  • Muthaporn, C., & Manoukian, E. B. (2004). Instability of bosonic matter in all dimensions. Physics Letters A, 321, 152–154.

    Article  Google Scholar 

  • Pauli, W. (1940). The connection between spin and statistics. Physical Review, 58, 716–722. https://doi.org/10.1103/PhysRev.58.716.

    Article  Google Scholar 

  • Pothos, E., & Busemeyer, J. (2009). A quantum probability explanation for violations of ‘rational’ decision theory. Proceedings of the Royal Society B, 276, 2171–2178.

    Article  Google Scholar 

  • Saunders, S. (2009). Fermi–Dirac Statistics. In D. Greenberger, K. Hentschel, & F. Weinert (Eds.), Compendium of quantum physics. Springer https://doi.org/10.1007/978-3-540-70626-7_71

  • Veloz, T. (2015). Toward a quantum theory of cognition: history, development, and perspectives. , Doctoral Dissertation, University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0221366

  • Wali, K. C. (2006). The man behind Bose statistics. Physics Today, 59, 46–52.

Download references

Acknowledgements

I thank Massimiliano Sassoli de Bianchi, Tomas Veloz and Diederik Aerts to read over the text of this article and give me their comments and suggestions. This work is funded by the European Union’s Horizon 2020 Research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No:721321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester Beltran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltran, L. Quantum Bose–Einstein Statistics for Indistinguishable Concepts in Human Language. Found Sci 28, 43–55 (2023). https://doi.org/10.1007/s10699-021-09794-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-021-09794-1

Keywords

Navigation