Skip to main content

Entanglement, Symmetry Breaking and Collapse: Correspondences Between Quantum and Self-Organizing Dynamics

Abstract

Quantum phenomena are notoriously difficult to grasp. The present paper first reviews the most important quantum concepts in a non-technical manner: superposition, uncertainty, collapse of the wave function, entanglement and non-locality. It then tries to clarify these concepts by examining their analogues in complex, self-organizing systems. These include bifurcations, attractors, emergent constraints, order parameters and non-local correlations. They are illustrated with concrete examples that include Rayleigh–Bénard convection, social self-organization and Gestalt perception of ambiguous figures. In both cases, quantum and self-organizing, the core process appears to be a symmetry breaking that irreversibly and unpredictably “collapses” an ambiguous state into one of a number of initially equivalent “eigenstates” or “attractors”. Some speculations are proposed about the non-linear amplification of quantum fluctuations of the vacuum being ultimately responsible for such symmetry breaking.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aerts, D. (1991). A mechanistic classical laboratory situation violating the Bell inequalities with 2.√2, exactly “in the same way” as its violations by the EPR experiments. Helvetica Physica Acta, 64(1), 1–23.

    Google Scholar 

  2. Aerts, D. (1998). The hidden measurement formalism: What can be explained and where quantum paradoxes remain. International Journal of Theoretical Physics, 37(1), 291–304.

    Article  Google Scholar 

  3. Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53(5), 314–348.

    Article  Google Scholar 

  4. Aerts, D., Aerts, S., Broekaert, J., & Gabora, L. (2000). The violation of bell inequalities in the macroworld. Foundations of Physics 30(9), 1387–1414. https://doi.org/10.1023/A:1026449716544.

    Article  Google Scholar 

  5. Aerts, D., Gabora, L., Sozzo, S., & Veloz, T. (2011). Quantum structure in cognition: fundamentals and applications. arXiv preprint.

  6. Aerts, D., & Sassoli de Bianchi, M. (2015). The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations. Journal of Mathematical Psychology, 67, 51–75. https://doi.org/10.1016/j.jmp.2015.01.003.

    Article  Google Scholar 

  7. Aerts, D., & Sassoli de Bianchi, M. (2016). The extended Bloch representation of quantum mechanics: Explaining superposition, interference, and entanglement. JJournal of Mathematical Physics, 57(12), 122110.

    Article  Google Scholar 

  8. Ashby, W. R. (1962). Principles of the self-organizing system. In H. von Foerster & G. W. Zopf (Eds.), Principles of self-organization (pp. 255–278). Oxford: Pergamon Press.

    Google Scholar 

  9. Aspect, A. (2007). Quantum mechanics: To be or not to be local. Nature, 446(7138), 866.

    Article  Google Scholar 

  10. Ball, P. (2012). Why society is a complex matter: Meeting twenty-first century challenges with a new kind of science (2012th ed.). New York: Springer.

    Book  Google Scholar 

  11. Basios, V. (2005). Encountering complexity: in need for a self-reflecting (pre)epistemology. Endophysics, Time, Quantum and the Subjective (Vols. 1-0, pp. 547–566). WORLD SCIENTIFIC.

  12. Basios, V., & Gunji, Y.-P. (2017). Chaotic dynamics in biological information processing: Revisiting and revealing its logic (a mini-review). Opera Medica et Physiologica (1).

  13. Bassi, A. (2007). Dynamical reduction models: present status and future developments. Journal of Physics: Conference Series (Vol. 67, p. 012013). IOP Publishing.

  14. Bedau, M. (2002). Downward causation and the autonomy of weak emergence. Principia, 6(1), 5.

    Google Scholar 

  15. Bodenschatz, E., Pesch, W., & Ahlers, G. (2000). Recent developments in Rayleigh-Bénard convection. Annual Review of Fluid Mechanics, 32(1), 709–778. https://doi.org/10.1146/annurev.fluid.32.1.709.

    Article  Google Scholar 

  16. Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383–393.

    Article  Google Scholar 

  17. Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Campbell, D. T. (1974). “Downward causation”in hierarchically organised biological systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology (pp. 179–186). Berlin: Springer.

    Chapter  Google Scholar 

  19. Castellani, E. (2003). On the meaning of symmetry breaking. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections (pp. 321–334). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  20. Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A., & Zbilut, J. P. (2007). Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos, Solitons and Fractals, 31(5), 1076–1088. https://doi.org/10.1016/j.chaos.2005.09.061.

    Article  Google Scholar 

  21. Dehaene, S. (2014). Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. Penguin.

  22. Dirac, P. A. M. (1981). The principles of quantum mechanics. Oxford: Oxford University Press.

    Google Scholar 

  23. Eberhard, P. H., & Ross, R. R. (1989). Quantum field theory cannot provide faster-than-light communication. Foundations of Physics Letters, 2(2), 127–149. https://doi.org/10.1007/BF00696109.

    Article  Google Scholar 

  24. Ghirardi, G. C., Grassi, R., Rimini, A., & Weber, T. (1988). Experiments of the EPR Type Involving CP-Violation do not allow faster-than-light communication between distant observers. Europhysics Letters, 6(2), 95. https://doi.org/10.1209/0295-5075/6/2/001.

    Article  Google Scholar 

  25. Ghirardi, G. C., Pearle, P., & Rimini, A. (1990). Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Physical Review A, 42(1), 78.

    Article  Google Scholar 

  26. Haken, H. (1977). Synergetics: an introduction: Nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. Berlin: Springer.

    Google Scholar 

  27. Helbing, D. (2001). Traffic and related self-driven many-particle systems. Rev Mod Phys, 73(4), 1067.

    Article  Google Scholar 

  28. Helbing, D., & Molnar, P. (1998). Self-organization phenomena in pedestrian crowds. arXiv preprint cond-mat/9806152. Retrieved from http://arxiv.org/abs/cond-mat/9806152.

  29. Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emergence of between-group differences. Evolution and Human Behavior, 19(4), 215–241.

    Article  Google Scholar 

  30. Heylighen, F. (1989). Causality as distinction conservation: A theory of predictability, reversibility and time order. Cybernetics and Systems, 20(5), 361–384. https://doi.org/10.1080/01969728908902213.

    Article  Google Scholar 

  31. Heylighen, F. (1990). Classical and nonclassical representations in physics II: quantum mechanics. Cybernetics and Systems, 21(5), 477–502. https://doi.org/10.1080/01969729008902255.

    Article  Google Scholar 

  32. Heylighen, F. (2001). The science of self-organization and adaptivity. The Encyclopedia of Life Support Systems, 5(3), 253–280.

    Google Scholar 

  33. Heylighen, F. (2009). Complexity and self-organization. In M. J. Bates & M. N. Maack (Eds.), Encyclopedia of library and information sciences (3rd ed., pp. 1215–1224). Milton Park: Taylor & Francis.

    Google Scholar 

  34. Heylighen, F. (2010). The self-organization of time and causality: Steps towards understanding the ultimate origin. Foundations of Science, 15(4), 345–356. https://doi.org/10.1007/s10699-010-9171-1.

    Article  Google Scholar 

  35. Heylighen, F., Cilliers, P., & Gershenson, C. (2007). Complexity and Philosophy. In J. Bogg & R. Geyer (Eds.), Complexity, science and society (pp. 117–134). Oxford: Radcliffe Publishing.

    Google Scholar 

  36. Hilborn, R. C. (2004). Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics. American Journal of Physics, 72(4), 425–427.

    Article  Google Scholar 

  37. Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81(2), 865.

    Article  Google Scholar 

  38. Joos, E., Zeh, H. D., Kiefer, C., Giulini, D. J., Kupsch, J., & Stamatescu, I.-O. (2013). Decoherence and the appearance of a classical world in quantum theory. Berlin: Springer.

    Google Scholar 

  39. Kornmeier, J., & Bach, M. (2012). Ambiguous figures: What happens in the brain when perception changes but not the stimulus. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2012.00051.

    Article  Google Scholar 

  40. Krauss, L. M. (2012). A Universe from nothing: Why there is something rather than nothing. New York City: Simon and Schuster.

    Google Scholar 

  41. Kruse, P., & Stadler, M. (2012). Ambiguity in mind and nature: Multistable cognitive phenomena. Berlin: Springer.

    Google Scholar 

  42. Mandl, F., & Shaw, G. (2010). Quantum field theory. Hoboken: Wiley.

    Google Scholar 

  43. Milnor, J. W. (2006). Attractor. Scholarpedia, 1(11), 1815. https://doi.org/10.4249/scholarpedia.1815.

    Article  Google Scholar 

  44. Milonni, P. W. (1984). Why spontaneous emission? American Journal of Physics, 52(4), 340–343. https://doi.org/10.1119/1.13886.

    Article  Google Scholar 

  45. Milonni, P. W. (2013). The quantum vacuum: An introduction to quantum electrodynamics. Boston: Academic Press.

    Google Scholar 

  46. Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.

    Google Scholar 

  47. Petrovic, K. (2018). On Cosmogony (ECCO Working Papers No. 2018-02). Retrieved from http://katarinapetrovic.net/on-cosmogony.pdf.

  48. Sen, P., & Chakrabarti, B. K. (2014). Sociophysics: An introduction. Oxford: OUP.

    Google Scholar 

  49. Sergent, C., & Dehaene, S. (2004). Is consciousness a gradual phenomenon?: Evidence for an all-or-none bifurcation during the attentional blink. . Psychological Science, 15(11), 720–728. https://doi.org/10.1111/j.0956-7976.2004.00748.x.

    Article  Google Scholar 

  50. Stadler, M., & Kruse, P. (1990). Theory of gestalt and self-organization. In F. Heylighen, E. Rosseel & F. Demeyer (Eds.), Self-Steering and cognition in complex systems (pp. 142–169). New York: Gordon and Breach.

  51. Tryon, E. P. (1973). Is the Universe a vacuum fluctuation? Nature, 246(5433), 396–397. https://doi.org/10.1038/246396a0.

    Article  Google Scholar 

  52. Tumulka, R. (2006). On spontaneous wave function collapse and quantum field theory. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences 462, pp. 1897–1908). The Royal Society.

  53. Wiseman, H. M. (2006). From Einstein’s theorem to Bell’s theorem: A history of quantum non-locality. Contemporary Physics, 47(2), 79–88.

    Article  Google Scholar 

  54. Yukalov, V. I., & Sornette, D. (2014). Self-organization in complex systems as decision making. Advances in Complex Systems, 17(03n04), 1450016. https://doi.org/10.1142/S0219525914500167.

    Article  Google Scholar 

  55. Zinn-Justin, J. (1996). Quantum field theory and critical phenomena. Oxford: Clarendon Press.

    Google Scholar 

  56. Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francis Heylighen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heylighen, F. Entanglement, Symmetry Breaking and Collapse: Correspondences Between Quantum and Self-Organizing Dynamics. Found Sci (2021). https://doi.org/10.1007/s10699-021-09780-7

Download citation

Keywords

  • Quantum processes
  • Self-organization
  • Entanglement
  • Collapse of the wave function
  • Symmetry breaking
  • Bifurcation