Waiting for Aπαταω: 250 Years Later

  • Victoria Wu
  • Vuk UskokovićEmail author


Scientific articles have been traditionally written from single points of view. In contrast, new knowledge is derived strictly from a dialectical process, through interbreeding of partially disparate perspectives. Dialogues, therefore, present a more veritable form for representing the process behind knowledge creation. They are also less prone to dogmatically disseminate ideas than monologues, alongside raising awareness of the necessity for discussion and challenging of differing points of view, through which knowledge evolves. Here we celebrate 250 years since the discovery of the chemical identity of the inorganic component of bone in 1769 by Johan Gottlieb Gahn through one such imaginary dialogue between two seasoned researchers and aficionados of this material. We provide the statistics on ups and downs in the popularity of this material throughout the history and also discuss important achievements and challenges associated with it. The shadow of Samuel Beckett’s Waiting for Godot is cast over the dialogue, acting as its frequent reference point and the guide. With this dialogue presented in the format of a play, we provide hope that conversational or dramaturgical compositions of scientific articles—albeit virtually prohibited from the scientific literature of the day—may become more pervasive in the future.


Bone Calcium phosphate Dialogue Godot Hydroxyapatite Theatre 



National Institutes of Health award R00-DE021416 is acknowledged for support. Quoted phrases and many of the nonquoted lines originate from the English version of Waiting for Godot (Beckett 1953). The authors thank Sergey Dorozhkin for persuading us that the 250th anniversary ought to be celebrated and all the peers who have been supportive of our attempt to bring new life into research on this fascinating material in the recent years.

Author’s Contribution

Per CRediT taxonomy: VW—Resources; VU—Conceptualization, Formal Analysis, Visualization, Writing.

Compliance with Ethical Standards

Conflict of interest

There are no conflict of interest to declare.


  1. Ahn, T. K., Lee, D. H., Kim, T. S., Jang, G. C., Choi, S., Oh, J. B., et al. (2018). Modification of titanium implant and titanium dioxide for bone tissue engineering. Advances in Experimental Medicine and Biology, 1077, 355–368.CrossRefGoogle Scholar
  2. Aikin A., & Aikin, C. R. (1807) Dictionary of chemistry and mineralogy, with an Account of the Processes Employed in Many of the Most Important Chemical Manufactures (Vol. II, pp. 176). London: John and Arthur Arch, Cornhill.Google Scholar
  3. Albee, F. H. (1920). Studies in bone growth: Triple calcium phosphate as a stimulus to osteogenesis. Annals in Surgery, 71(1), 32–39.CrossRefGoogle Scholar
  4. Basic Energy Sciences Advisory Committee. (2015). Challenges at the frontiers of matter and energy: Transformative opportunities for discovery science. Washington, DC: U.S. Department of Energy.Google Scholar
  5. Bateson, G. (1972). Steps to an ecology of mind. Chicago, IL: The University of Chicago Press.Google Scholar
  6. Bateson, G. (1979). Mind and nature: A necessary unity. Cresskill, NJ: Hampton Press.Google Scholar
  7. Beckett, S. (1953). Waiting for godot: A tragicomedy in two acts. New York, NY: Grove Press.Google Scholar
  8. Benjakul, S., Mad-Ali, S., Senphan, T., & Sookchoo, P. (2017). Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. Journal of Food Biochemistry, 41, e12412.CrossRefGoogle Scholar
  9. Boyle, R. A., Lenton, T. M., & Williams, H. T. P. (2007). Neoproterozoic ‘snowball earth’ glaciations and the evolution of altruism. Geobiology, 5(4), 337–349.CrossRefGoogle Scholar
  10. Brecht, B. (1955). Life of galileo. In J. Willett & R. Manheim (Eds.), Bertolt brecht: Plays, poetry and prose. London: Methuen.Google Scholar
  11. Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., et al. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science Materials in Medicine, 25(10), 2445–2461.CrossRefGoogle Scholar
  12. Cazalbou, S., Combes, C., Eichert, D., & Rey, C. (2004). Adaptative physico-chemistry of bio-related calcium phosphates. Journal of Materials Chemistry, 14, 2148–2153.CrossRefGoogle Scholar
  13. Coupland, D. (2010). Marshall McLuhan: You know nothing of my work! (p. 87). New York, NY: Atlas & Co.Google Scholar
  14. Crabb, C. (2006). Doris #23. Portland, OR: Microcosm Publishing.Google Scholar
  15. Craven, B. M. (1976). Crystal structure of cholesterol monohydrate. Nature, 260, 727–729.CrossRefGoogle Scholar
  16. Dennick, R., & Spencer, J. (2011). Teaching and learning in small groups. In T. Dornan, K. V. Mann, A. J. J. A. Scherpbier, & J. A. Spencer (Eds.), Medical education: Theory and practice E-Book. Oxford: Elsevier.Google Scholar
  17. Djerassi, C. (2012). Chemistry in theatre: Insufficiency, phallacy or both. London: Imperial College Press.CrossRefGoogle Scholar
  18. Djerassi, C., & Hoffmann, R. (2001). Oxygen. New York, NY: Wiley.Google Scholar
  19. Do, T. N., Lee, W. H., Loo, C. Y., Zavgorodniy, A. V., & Rohanizadeh, R. (2012). Hydroxyapatite nanoparticles as vectors for gene delivery. Therapeutic Delivery, 3, 623–632.CrossRefGoogle Scholar
  20. Dorozhkin, S. V. (2009). Calcium orthophosphates in nature, biology and medicine. Materials, 2, 399–498.CrossRefGoogle Scholar
  21. Dorozhkin, S. V. (2013). A detailed history of calcium orthophosphates from 1770 s till 1950. Materials Science and Engineering C, 33, 3085–3110.CrossRefGoogle Scholar
  22. Dürrenmatt, F. (1964). The physicists. Translated from German by James Kirkup. New York: Grove Press.Google Scholar
  23. Dylan, B. (1975) Idiot wind [Recorded by Bob Dylan]. On Blood on the tracks. New York, NY: Columbia Records.Google Scholar
  24. Eftekharzadeh, S., Sabetkish, N., Sabetkish, S., & Kajbafzadeh, A. M. (2017). Comparing the bulking effect of calcium hydroxyapatite and Deflux injection into the bladder neck for improvement of urinary incontinence in bladder exstrophy-epispadias complex. International Urology and Nephrology, 49(2), 183–189.CrossRefGoogle Scholar
  25. Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10, 334.CrossRefGoogle Scholar
  26. Epple, M. (2018). Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomaterialia, 77, 1–14.CrossRefGoogle Scholar
  27. Essamlali, Y., Amadine, O., Larzek, M., Len, C., & Zahouily, M. (2017). Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management, 149, 355–367.CrossRefGoogle Scholar
  28. Euclidis. (1888). Elementa. Leipzig: B. G. Teubner.Google Scholar
  29. Farley, J. C. (2012). The economics of sustainability. In H. Cabezas & U. Diwekar (Eds.), Sustainability: Multi-disciplinary perspectives. Oak Park, IL: Bentham Science Publishers.Google Scholar
  30. Fosca, M., Komlev, V. S., Fedotov, A. Y., Caminiti, R., & Rau, J. V. (2012). Structural study of octacalcium phosphate bone cement conversion in vitro. ACS Applied Materials & Interfaces, 4(11), 6202–6210.CrossRefGoogle Scholar
  31. Fukase, Y., Eanes, E. D., Takagi, S., Chow, L. C., & Brown, W. E. (1990). Setting reactions and compressive strengths of calcium phosphate cements. Journal of Dental Research, 69(12), 1852–1856.CrossRefGoogle Scholar
  32. Ghosh, S., Wu, V. M., Pernal, S., & Uskoković, V. (2016). Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced bone graft applications. ACS Applied Materials & Interfaces, 8(12), 7691–7708.CrossRefGoogle Scholar
  33. Giovannini, R., & Freitag, R. (2001). Comparison of different types of ceramic hydroxyapatite for the chromatographic separation of plasmid DNA and a recombinant anti-Rhesus D antibody. Bioseparation, 9, 359–368.CrossRefGoogle Scholar
  34. Gogolewski, S., & Gorna, K. (2007). Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. Journal of Biomedical Materials Research A, 80(1), 94–101.CrossRefGoogle Scholar
  35. Gryshkov, O., Klyui, N. I., Temchenko, V. P., Kyselov, V. S., Chatterjee, A., Belyaev, A. E., et al. (2016). Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Materials Science and Engineering C, 68, 143–152.CrossRefGoogle Scholar
  36. Guerrier, L., Flayeux, I., & Boschetti, E. (2001). A dual-mode approach to the selective separation of antibodies and their fragments. Journal of Chromatography B, 755, 37–46.CrossRefGoogle Scholar
  37. Habraken, W., Habibovic, P., Epple, M., & Bohner, M. (2016). Calcium phosphates in biomedical applications: Materials for the Future? Materials Today, 19, 69–87.CrossRefGoogle Scholar
  38. Ignjatović, N. L., Sakač, M., Kuzminac, I., Kojić, V., Marković, S., Vasiljević-Radović, D., et al. (2018). Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. Journal of Materials Chemistry B, 6, 6957–6968.CrossRefGoogle Scholar
  39. Johansson, P., Barkarmo, S., Hawthan, M., Peruzzi, N., Kjellin, P., & Wennerberg, A. (2018). Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of Biomedical Materials Research A, 106(5), 1440–1447.CrossRefGoogle Scholar
  40. Juntavee, N., Juntavee, A., & Plongniras, P. (2018). Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration. International Journal of Nanomedicine, 13, 2755–2765.CrossRefGoogle Scholar
  41. Khan, M. A., Wu, V. M., Ghosh, S., & Uskoković, V. (2016). Gene Delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives. Journal of Colloid and Interface Science, 471, 48–58.CrossRefGoogle Scholar
  42. Kunz, W. (2010). Specific ion effects in colloidal and biological systems. Current Opinion in Colloid & Interface Science, 15, 34–39.CrossRefGoogle Scholar
  43. Lang, S. B., Tofail, S. A., Kholkin, A. L., Wojtaś, M., Gregor, M., Gandhi, A. A., et al. (2013). Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Scientific Reports, 3, 2215.CrossRefGoogle Scholar
  44. Lassaigne, M. (1847). Solubility of carbonate of lime in water containing carbonic acid. Philosophical Magazine Ser, 3(30), 297–298.Google Scholar
  45. Lenton, S., Nylander, T., Teixeira, S. C., & Holt, C. (2015). A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Science and Technology, 95, 3–14.CrossRefGoogle Scholar
  46. Liu, G. X., Xue, C. B., & Zhu, P. Z. (2017). Removal of carmine from aqueous solution by carbonated hydroxyapatite nanorods. Nanomaterials, 7, 137.CrossRefGoogle Scholar
  47. Macewen, W. (1881). Observations concerning transplantation of bone. Illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proceedings of the Royal Society London, 32, 232–247.CrossRefGoogle Scholar
  48. Maiti, G. C., & Freund, F. (1981). Influence of fluorine substitution on the proton conductivity of hydroxyapatite. Journal of Chemical Society Dalton Transactions, 4, 949–955.CrossRefGoogle Scholar
  49. Manda, M. G., da Silva, L. P., Cerqueira, M. T., Pereira, D. R., Oliveira, M. B., Mano, J. F., et al. (2018). Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research A, 106(2), 479–490.CrossRefGoogle Scholar
  50. Mehmel, M. (1930). On the structure of apatite. Zeitschrift für Kristallographie, 75, 323–331.Google Scholar
  51. Mehta, D., Jyothi, S., Moogi, P., Finger, W. J., & Sasaki, K. (2018). Novel treatment of in-office tooth bleaching sensitivity: A randomized, placebo-controlled clinical study. Journal of Esthetic and Restorative Dentistry, 30, 254–258.CrossRefGoogle Scholar
  52. Moran, L. B., Berkowitz, J. K., & Yesinowski, J. P. (1992). F-19 and P-31 magic-angle spinning nuclear-magnetic-resonance of antimony(III)-doped fluoroapatite phosphors-dopant sites and spin diffusion. Physical Review B, 45, 5347–5360.CrossRefGoogle Scholar
  53. Morozova, D., Möhlmann, D., & Wagner, D. (2007). Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Origins of Life and Evolution of Biospheres, 37, 189–200.CrossRefGoogle Scholar
  54. Nakamura, M., Hiratai, R., & Yamashita, K. (2012). Bone mineral as an electrical energy reservoir. Journal of Biomedical Materials Research A, 100, 1368–1374.CrossRefGoogle Scholar
  55. Narayan, R., Agarwal, T., Mishra, D., Maji, S., Mohanty, S., Mukhopadhyay, A., et al. (2017). Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold. Colloids and Surfaces B, 160, 661–670.CrossRefGoogle Scholar
  56. Náray-Szabó, S. (1930). The structure of apatite (CaF)Ca4(PO4)3. Zeitschrift für Kristallographie, 75, 387–398.Google Scholar
  57. Niederberger, M., & Colfen, H. (2006). Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics, 8, 3271–3287.CrossRefGoogle Scholar
  58. Oliva, J., De Pablo, J., Cortina, J.-L., Cama, J., & Ayora, C. (2011). Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments. Journal of Hazardous Materials, 194, 312–323.CrossRefGoogle Scholar
  59. Pernal, S. P., Wu, V. M., & Uskoković, V. (2017). Hydroxyapatite as a vehicle for the selective effect of superparamagnetic iron oxide nanoparticles against human glioblastoma cells. ACS Applied Materials & Interfaces, 9(45), 39283–39302.CrossRefGoogle Scholar
  60. Player, T. C., & Hore, P. J. (2018). Posner qubits: Spin dynamics of entangled Ca9(PO4)6 molecules and their role in neural processing. Journal of the Royal Society, Interface, 15, 20180494.CrossRefGoogle Scholar
  61. Raoult, D., Drancourt, M., Azza, S., Nappez, C., Guiey, R., Rolain, J. M., et al. (2008). Nanobacteria are mineralo fetuin complexes. PLoS Pathogenesis, 4(2), e41.CrossRefGoogle Scholar
  62. Ratnayake, J. T. B., Mucalo, M., & Dias, G. J. (2017). Substituted hydroxyapatites for bone regeneration: A review of current trends. Journal of Biomedical Materials Research B, 105, 1285–1299.CrossRefGoogle Scholar
  63. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. K. (2012). Biomaterials science: An introduction to materials in medicine. Amsterdam, NL: Elsevier Academic Press.Google Scholar
  64. Rigali, M., Brady, P. V., & Moore, R. (2016). Radionuclide removal by apatite. American Mineralogist, 101, 2611–2619.CrossRefGoogle Scholar
  65. Roscoe, H. E., & Schorlemmer, C. (1881). A treatise on chemistry. Volume I: The non-metallic elements (p. 458). London: Macmillan and Co.Google Scholar
  66. Roycroft, P. D., & Cuypers, M. (2015). The etymology of the mineral name ‘apatite’: A clarification. Irish Journal of Earth Sciences, 33, 71–75.CrossRefGoogle Scholar
  67. Saito, M., Kurosawa, Y., & Okuyama, T. (2013). Scanning electron microscopy-based approach to understand the mechanism underlying the adhesion of dengue viruses on ceramic hydroxyapatite columns. PLoS ONE, 8(1), e53893.CrossRefGoogle Scholar
  68. Seitz, H., Reider, W., Irsen, S., Leukers, B., & Tille, C. (2005). Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research B, 74, 782–788.CrossRefGoogle Scholar
  69. Stock, S. R. (2015). The mineral-collagen interface in bone. Calcified Tissue International, 97, 262–280.CrossRefGoogle Scholar
  70. Stoppard, T. (1993). Arcadia: A play in two acts. Los Angeles, CA: Samuel French.CrossRefGoogle Scholar
  71. Suda, H., Yashima, M., Kakihana, M., & Yoshimura, M. (1995). Monoclinic ↔ hexagonal phase transition in hydroxyapatite studied by X-Ray Powder diffraction and differential scanning calorimeter techniques. Journal of Physical Chemistry, 99, 6752–6754.CrossRefGoogle Scholar
  72. Swift, M. W., van de Walle, C. G., & Fisher, M. P. A. (2018). Posner molecules: From atomic structure to nuclear spins. Physical Chemistry Chemical Physics, 20, 12373–12380.CrossRefGoogle Scholar
  73. Tofail, S. A. M., Baldisserri, C., Haverty, D., McMonagle, J. B., & Erhart, J. (2009). Pyroelectric syrface charge in hydroxyapatite ceramics. Journal of Applied Physics, 106, 106104.CrossRefGoogle Scholar
  74. Tolkien, J. R. R. (1954). The lord of the rings. Crown Nest, NSW: Allen & Unwin.Google Scholar
  75. Tománek, D. (2011). Fame on sale: Pitfalls of the ranking game. Materials Express, 1(4), 355–356.CrossRefGoogle Scholar
  76. Tunstall, K. T. (2004) False alarm. [Recorded by KT Tunstall] On Eye to the telescope. London, UK: Relentless Records.Google Scholar
  77. Uskoković, V. (2012). On love in the realm of science. Technoetic Arts, 10(2–3), 359–374.CrossRefGoogle Scholar
  78. Uskoković, V. (2014). Chemical reactions as petite rendezvous: The use of metaphor in materials science education. Journal of Materials Education, 36(1–2), 25–50.Google Scholar
  79. Uskoković, V. (2015a). Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Critical Reviews in Therapeutic Drug Carrier Systems, 32(1), 1–59.CrossRefGoogle Scholar
  80. Uskoković, V. (2015b). The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Advances, 5, 36614–36633.CrossRefGoogle Scholar
  81. Uskoković, V. (2015c). When 1 + 1 > 2: Nanostructured composite materials for hard tissue engineering applications. Materials Science and Engineering C, 57, 434–451.CrossRefGoogle Scholar
  82. Uskoković, V. (2017). Rethinking active learning as the paradigm of our times: Towards poetization of education in the age of STEM. Journal of Materials Education, 39(5–6), 241–258.Google Scholar
  83. Uskoković, V., & Bertassoni, L. E. (2010). Nanotechnology in dental sciences: Moving towards a finer way of doing dentistry. Materials, 3(3), 1674–1691.CrossRefGoogle Scholar
  84. Uskoković, V., & Desai, T. A. (2013a). Calcium phosphate nanoparticles: A future therapeutic platform for the treatment of osteomyelitis? Therapeutic Delivery, 4(6), 643–645.CrossRefGoogle Scholar
  85. Uskoković, V., & Desai, T. A. (2013b). Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. Journal of Biomedical Materials Research A, 101(5), 1416–1426.CrossRefGoogle Scholar
  86. Uskoković, V., & Desai, T. A. (2014). Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Materials Science and Engineering C, 37, 210–222.CrossRefGoogle Scholar
  87. Uskoković, V., & Rau, J. V. (2017). Nonlinear oscillatory dynamics of the hardening of calcium phosphate cements. RSC Advances, 7, 40517–40532.CrossRefGoogle Scholar
  88. Uskoković, V., Tang, S., & Wu, V. M. (2018). On grounds of the memory effect in amorphous and crystalline apatite: Kinetics of crystallization and biological response. ACS Applied Materials & Interfaces, 10(17), 14491–14508.CrossRefGoogle Scholar
  89. Uskoković, V., & Wu, V. M. (2016). Calcium phosphate as a key material for socially responsible tissue engineering. Materials, 9, 434–460.CrossRefGoogle Scholar
  90. Van Lieshout, E. M. M., Van Kralingen, G. H., El-Massoudi, Y., Weinans, H., & Patka, P. (2011). Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskeletal Disorders, 12, 34.CrossRefGoogle Scholar
  91. Von Walter, P. (1821). Wiedereinheilung der bei der trapanation ausgebohrten knochenscheibe. Journal Chir. Augenheilkd., 2, 571.Google Scholar
  92. Wiles, P. (1983). Ideology, Methodology, and neoclassical economics. In A. S. Eichner (Ed.), Why Economics is not yet a science (pp. 61–89). Armonk, NY: M. E. Sharpe Inc.CrossRefGoogle Scholar
  93. Winograd, T., & Flores, F. (1987). Understanding computers and cognition: A new foundations for design. Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  94. Wopenka, B., & Pasteris, J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering C, 25, 131–143.CrossRefGoogle Scholar
  95. Wu, V. M., Tang, S., & Uskoković, V. (2018). Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: The antibacterial effect. ACS Applied Materials & Interfaces, 10(40), 34013–34028.CrossRefGoogle Scholar
  96. Wu, V. M., & Uskoković, V. (2017). Calcium phosphate nanoparticles in drosophila melanogaster: The effects of phase composition, crystallinity and the pathway of formation. ACS Biomaterials Science and Engineering, 3(10), 2348–2357.CrossRefGoogle Scholar
  97. Xie, R., Hu, J., Hoffmann, O., Zhang, Y., Ng, F., Qin, T., et al. (2018). Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. Biochimica et Biophysica Acta, General Subjects, 1862(4), 936–945.CrossRefGoogle Scholar
  98. Xiong, L., Wang, P., & Kopittke, P. M. (2018). Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma, 323, 116–125.CrossRefGoogle Scholar
  99. Young, J. D., Martel, J., Young, L., Wu, C. Y., Young, A., & Young, D. (2009). Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis. PLoS ONE, 4(2), e4417.CrossRefGoogle Scholar
  100. Zhang, M. J., Liu, S. N., Xu, G., Guo, Y. N., Fu, J. N., & Zhang, D. C. (2014). Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells. International Journal of Nanomedicine, 9, 265–271.Google Scholar
  101. Zimmermann, E. A., & Ritchie, R. O. (2015). Bone as a structural material. Advanced Healthcare Materials, 4, 1287–1304.CrossRefGoogle Scholar
  102. Zuckermann, H. (1977). Scientific elite: Nobel laureates in the United States (p. 134). New York, NY: The Free Press.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.IrvineUSA
  2. 2.Department of BioengineeringUniversity of IllinoisChicagoUSA

Personalised recommendations