Skip to main content

Gregory’s Sixth Operation

Abstract

In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathematics under scrutiny. Following Ian Hacking, we point out that in the history of mathematics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of \(\pi \). Here Gregory referred to the last or ultimate terms of a series. More broadly, we analyze the following questions: which modern framework is more appropriate for interpreting the procedures at work in texts from the early history of infinitesimal analysis? As well as the related question: what is a logical theory that is close to something early modern mathematicians could have used when studying infinite series and quadrature problems? We argue that what has been routinely viewed from the viewpoint of classical analysis as an example of an “unrigorous” practice, in fact finds close procedural proxies in modern infinitesimal theories. We analyze a mix of social and religious reasons that had led to the suppression of both the religious order of Gregory’s teacher degli Angeli, and Gregory’s books at Venice, in the late 1660s.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Today scholars distinguish carefully between indivisibles (i.e., codimension one objects) and infinitesimals (i.e., of the same dimension as the entity they make up); see e.g., Koyré (1954). However, in the 17th century the situation was less clearcut. The term infinitesimal itself was not coined until the 1670s; see Katz and Sherry (2013).

  2. 2.

    This was an older order than the jesuits. Cavalieri had also belonged to the jesuat order.

  3. 3.

    Jean Bertet (1622–1692), jesuit, quit the Order in 1681. In 1689 Bertet conspired with Leibniz and Antonio Baldigiani in Rome to have the ban on Copernicanism lifted (Wallis 2012).

  4. 4.

    Translation: “But the fact that in Fermat’s equations those terms into which such things enter as squares or rectangles [i.e., multiplied by themselves or by each other] are eliminated but not those into which simple infinitesimal lines [i.e., segments] enter—the reason for that is not because the latter are something whereas the former are really nothing [as Nieuwentijt maintained], but because ordinary terms cancel each other out.”

  5. 5.

    The sources of such a proposal go back (at least) to A. Koyré who wrote: “Le problème du langage à adopter pour l’exposition des oeuvres du passé est extrêmement grave et ne comporte pas de solution parfaite. En effet, si nous gardons la langue (la terminologie) de l’auteur étudié, nous risquons de le laisser incompréhensible, et si nous lui substituons la nôtre, de le trahir.” (Koyré 1954, p. 335, note 3).

References

  1. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., et al. (2017). Interpreting the infinitesimal mathematics of Leibniz and Euler. Journal for General Philosophy of Science, 48(1). doi:10.1007/s10838-016-9334-z, http://arxiv.org/abs/1605.00455

  2. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., et al. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.

    Article  Google Scholar 

  3. Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., et al. (2016). Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS: Journal of the Internatonal Society for the History of Philosophy of Science, 6(1), 117–147. doi:10.1086/685645, http://arxiv.org/abs/1603.07209

  4. Błaszczyk, P., Borovik, A., Kanovei, V., Katz, M., Kudryk, T., Kutateladze, S., et al. (2016). A non-standard analysis of a cultural icon: The case of Paul Halmos. Logica Universalis, 10(4), 393–405. doi:10.1007/s11787-016-0153-0, http://arxiv.org/abs/1607.00149

  5. Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., Sherry. D. (2017a). Toward a history of mathematics focused on procedures. Foundations of Science. doi:10.1007/s10699-016-9498-3, http://arxiv.org/abs/1609.04531

  6. Błaszczyk, P., Kanovei, V., Katz, M., & Sherry, D. (2017b). Controversies in the foundations of analysis: Comments on Schubring’s Conflicts. Foundations of Science. doi:10.1007/s10699-015-9473-4, http://arxiv.org/abs/1601.00059

  7. Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi:10.1007/s10699-011-9235-x.

    Article  Google Scholar 

  8. Bos, H. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.

    Article  Google Scholar 

  9. Corry, L. (2013). Geometry and arithmetic in the medieval traditions of Euclid’s Elements: A view from Book II. Archive for History of Exact Sciences, 67(6), 637–705.

    Article  Google Scholar 

  10. Dehn, M., & Hellinger, E. (1943). Certain mathematical achievements of James Gregory. The American Mathematical Monthly, 50, 149–163.

    Article  Google Scholar 

  11. Ferraro, G. (2008). The rise and development of the theory of series up to the early 1820s. Sources and studies in the history of mathematics and physical sciences. New York: Springer.

    Google Scholar 

  12. Festa, E. (1990). La querelle de l’atomisme: Galilée, Cavalieri et les Jésuites.” La Recherche, (Sept. 1990), 1038–1047.

  13. Festa, E. (1992). Quelques aspects de la controverse sur les indivisibles. Geometry and atomism in the Galilean school, 193–207, Bibl. Nuncius Studi Testi, X, Olschki, Florence.

  14. González-Velasco, E. (2011). Journey through mathematics. Creative episodes in its history. New York: Springer.

    Book  Google Scholar 

  15. Gregory, J. (1667). Vera Circuli et Hyperbolae Quadratura. Padua edition, 1667. Patavia edition, 1668.

  16. Gutman, A., Katz, M., Kudryk, T., & Kutateladze, S. (2016). The mathematical intelligencer flunks the olympics. Foundations of Science. http://link.springer.com/article/10.1007/s10699-016-9485-8

  17. Hacking, I. (2014). Why is there philosophy of mathematics at all?. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Hellyer, M. (1996). ‘Because the authority of my superiors commands’: Censorship, physics and the German Jesuits. Early Science and Medicine, 3, 319–354.

    Article  Google Scholar 

  19. Kanovei, V., Katz, K., Katz, M., & Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51. doi:10.1007/s00283-015-9565-6, http://arxiv.org/abs/1506.02586

  20. Kanovei, V., Katz, M., & Mormann, T. (2013). Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Foundations of Science, 18(2), 259–296. doi:10.1007/s10699-012-9316-5, http://arxiv.org/abs/1211.0244

  21. Katz, K., & Katz, M. (2011). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica, 56(2), 223–302. http://arxiv.org/abs/1110.5456

  22. Katz, K., & Katz, M. (2012). Stevin numbers and reality. Foundations of Science, 17(2), 109–123. doi:10.1007/s10699-011-9228-9, http://arxiv.org/abs/1107.3688

  23. Katz, M., & Leichtnam, E. (2013). Commuting and noncommuting infinitesimals. American Mathematical Monthly, 120(7), 631–641. doi:10.4169/amer.math.monthly.120.07.631, http://arxiv.org/abs/1304.0583

  24. Katz, M., & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625.

    Article  Google Scholar 

  25. Koyré, A. (1954). Bonaventura Cavalieri et lagéométrie descontinus. In Etudes d’histoire de lapenséescientifique, Gallimard, 1973. Originally published in Hommage à Lucien Febvre. Paris: Colin.

  26. Leibniz, G. (1695). Responsio ad nonnullas difficultates a Dn. Bernardo Niewentiit circa methodum differentialem seu infinitesimalem motas. Act. Erudit. Lips. (1695). In Gerhardt, C. (Ed.), Leibnizens mathematische Schriften (Vol. V, pp. 320–328). Berlin and Halle: Eidmann. A French translation is in [Leibniz 1989, p. 316–334].

  27. Leibniz, G. (1702). To Varignon, 2 feb. 1702. In Gerhardt, C. (Ed.), Leibnizens mathematische Schriften (Vol. IV, pp. 91–95). Berlin and Halle: Eidmann.

  28. Leibniz, G. (1710). Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali. In Gerhardt, C. (Ed.), Leibnizens mathematische Schriften (Vol. V, pp. 377–382). Berlin and Halle: Eidmann.

  29. Leibniz, G. (1989). La naissance du calcul différentiel. 26 articles des Acta Eruditorum. Translated from the Latin and with an introduction and notes by Marc Parmentier. With a preface by Michel Serres. Mathesis. Librairie Philosophique J. Vrin, Paris.

  30. Leibniz, G. W. (1672). Sämtliche Schriften und Briefe. Reihe 7. Mathematische Schriften. Band 6. pp. 1673–1676. Arithmetische Kreisquadratur. [Collected works and letters. Series VII. Mathematical writings. Vol. 6, pp. 1673–1676. Arithmetic squaring of the circle] Edited by Uwe Mayer and Siegmund Probst. With an introduction and editorial remarks in German. Akademie Verlag, Berlin, 2012. Vol. VII, 3, no. 6, 65.

  31. Lützen, J. (2014). 17th century arguments for the impossibility of the indefinite and the definite circle quadrature. Revue d’histoire des mathématiques, 20(2), 211–251.

    Google Scholar 

  32. Malet, A. (1989). Studies on James Gregorie (1638–1675). Thesis (Ph.D.) Princeton University.

  33. Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland.

    Google Scholar 

  34. Scott, J. (1981). The mathematical work of John Wallis, D.D., F.R.S. (1616–1703). Second edition. With a foreword by E. N. da C. Andrade. New York: Chelsea Publishing.

  35. Tao, T. (2014). Hilbert’s fifth problem and related topics. Graduate Studies in Mathematics 153. American Mathematical Society, Providence, RI.

  36. Tao, T., & Vu, V. (2016). Sum-avoiding sets in groups. Discrete Analysis. doi:10.19086/da.887, http://arxiv.org/abs/1603.03068

  37. Turnbull, H. (1939). James Gregory tercentenary memorial volume. Royal Society of Edinburgh. London: G. Bell and Sons.

    Google Scholar 

  38. Unguru, S. (1976). Fermat revivified, explained, and regained. Francia, 4, 774–789.

    Google Scholar 

  39. Wallis, J. (1656). Arithmetica infinitorum sive Nova Methodus Inquirendi in Curvilineorum Quadraturam, aliaque difficiliora Matheseos Problemata. Oxonii. Typis Leon Lichfield Academiae Typographi Impensis Tho. Robinson.

  40. Wallis, J. (2012). The correspondence of John Wallis. Vol. III (October 1668–1671). Edited by Philip Beeley and Christoph J. Scriba. Oxford: Oxford University Press.

  41. Wartofsky, M. (1976). The relation between philosophy of science and history of science. In R. S. Cohen, P. K. Feyerabend, & M. W. Wartofsky (Eds.), Essays in memory of Imre Lakatos (pp. 717–737)., Boston studies in the philosophy of science XXXIX Dordrecht: D. Reidel Publishing.

    Chapter  Google Scholar 

Download references

Acknowledgements

M. Katz was partially supported by the Israel Science Foundation Grant No. 1517/12.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bascelli, T., Błaszczyk, P., Kanovei, V. et al. Gregory’s Sixth Operation. Found Sci 23, 133–144 (2018). https://doi.org/10.1007/s10699-016-9512-9

Download citation

Keywords

  • Convergence
  • Gregory’s sixth operation
  • Infinite number
  • Law of continuity
  • Transcendental law of homogeneity