Gregory’s Sixth Operation

  • Tiziana Bascelli
  • Piotr Błaszczyk
  • Vladimir Kanovei
  • Karin U. Katz
  • Mikhail G. Katz
  • Semen S. Kutateladze
  • Tahl Nowik
  • David M. Schaps
  • David Sherry
Article

Abstract

In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathematics under scrutiny. Following Ian Hacking, we point out that in the history of mathematics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of \(\pi \). Here Gregory referred to the last or ultimate terms of a series. More broadly, we analyze the following questions: which modern framework is more appropriate for interpreting the procedures at work in texts from the early history of infinitesimal analysis? As well as the related question: what is a logical theory that is close to something early modern mathematicians could have used when studying infinite series and quadrature problems? We argue that what has been routinely viewed from the viewpoint of classical analysis as an example of an “unrigorous” practice, in fact finds close procedural proxies in modern infinitesimal theories. We analyze a mix of social and religious reasons that had led to the suppression of both the religious order of Gregory’s teacher degli Angeli, and Gregory’s books at Venice, in the late 1660s.

Keywords

Convergence Gregory’s sixth operation Infinite number Law of continuity Transcendental law of homogeneity 

References

  1. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., et al. (2017). Interpreting the infinitesimal mathematics of Leibniz and Euler. Journal for General Philosophy of Science, 48(1). doi:10.1007/s10838-016-9334-z, http://arxiv.org/abs/1605.00455
  2. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., et al. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.CrossRefGoogle Scholar
  3. Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., et al. (2016). Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS: Journal of the Internatonal Society for the History of Philosophy of Science, 6(1), 117–147. doi:10.1086/685645, http://arxiv.org/abs/1603.07209
  4. Błaszczyk, P., Borovik, A., Kanovei, V., Katz, M., Kudryk, T., Kutateladze, S., et al. (2016). A non-standard analysis of a cultural icon: The case of Paul Halmos. Logica Universalis, 10(4), 393–405. doi:10.1007/s11787-016-0153-0, http://arxiv.org/abs/1607.00149
  5. Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., Sherry. D. (2017a). Toward a history of mathematics focused on procedures. Foundations of Science. doi:10.1007/s10699-016-9498-3, http://arxiv.org/abs/1609.04531
  6. Błaszczyk, P., Kanovei, V., Katz, M., & Sherry, D. (2017b). Controversies in the foundations of analysis: Comments on Schubring’s Conflicts. Foundations of Science. doi:10.1007/s10699-015-9473-4, http://arxiv.org/abs/1601.00059
  7. Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi:10.1007/s10699-011-9235-x.CrossRefGoogle Scholar
  8. Bos, H. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.CrossRefGoogle Scholar
  9. Corry, L. (2013). Geometry and arithmetic in the medieval traditions of Euclid’s Elements: A view from Book II. Archive for History of Exact Sciences, 67(6), 637–705.CrossRefGoogle Scholar
  10. Dehn, M., & Hellinger, E. (1943). Certain mathematical achievements of James Gregory. The American Mathematical Monthly, 50, 149–163.CrossRefGoogle Scholar
  11. Ferraro, G. (2008). The rise and development of the theory of series up to the early 1820s. Sources and studies in the history of mathematics and physical sciences. New York: Springer.Google Scholar
  12. Festa, E. (1990). La querelle de l’atomisme: Galilée, Cavalieri et les Jésuites.” La Recherche, (Sept. 1990), 1038–1047.Google Scholar
  13. Festa, E. (1992). Quelques aspects de la controverse sur les indivisibles. Geometry and atomism in the Galilean school, 193–207, Bibl. Nuncius Studi Testi, X, Olschki, Florence.Google Scholar
  14. González-Velasco, E. (2011). Journey through mathematics. Creative episodes in its history. New York: Springer.CrossRefGoogle Scholar
  15. Gregory, J. (1667). Vera Circuli et Hyperbolae Quadratura. Padua edition, 1667. Patavia edition, 1668.Google Scholar
  16. Gutman, A., Katz, M., Kudryk, T., & Kutateladze, S. (2016). The mathematical intelligencer flunks the olympics. Foundations of Science. http://link.springer.com/article/10.1007/s10699-016-9485-8
  17. Hacking, I. (2014). Why is there philosophy of mathematics at all?. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Hellyer, M. (1996). ‘Because the authority of my superiors commands’: Censorship, physics and the German Jesuits. Early Science and Medicine, 3, 319–354.CrossRefGoogle Scholar
  19. Kanovei, V., Katz, K., Katz, M., & Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51. doi:10.1007/s00283-015-9565-6, http://arxiv.org/abs/1506.02586
  20. Kanovei, V., Katz, M., & Mormann, T. (2013). Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Foundations of Science, 18(2), 259–296. doi:10.1007/s10699-012-9316-5, http://arxiv.org/abs/1211.0244
  21. Katz, K., & Katz, M. (2011). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica, 56(2), 223–302. http://arxiv.org/abs/1110.5456
  22. Katz, K., & Katz, M. (2012). Stevin numbers and reality. Foundations of Science, 17(2), 109–123. doi:10.1007/s10699-011-9228-9, http://arxiv.org/abs/1107.3688
  23. Katz, M., & Leichtnam, E. (2013). Commuting and noncommuting infinitesimals. American Mathematical Monthly, 120(7), 631–641. doi:10.4169/amer.math.monthly.120.07.631, http://arxiv.org/abs/1304.0583
  24. Katz, M., & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625.CrossRefGoogle Scholar
  25. Koyré, A. (1954). Bonaventura Cavalieri et lagéométrie descontinus. In Etudes d’histoire de lapenséescientifique, Gallimard, 1973. Originally published in Hommage à Lucien Febvre. Paris: Colin.Google Scholar
  26. Leibniz, G. (1695). Responsio ad nonnullas difficultates a Dn. Bernardo Niewentiit circa methodum differentialem seu infinitesimalem motas. Act. Erudit. Lips. (1695). In Gerhardt, C. (Ed.), Leibnizens mathematische Schriften (Vol. V, pp. 320–328). Berlin and Halle: Eidmann. A French translation is in [Leibniz 1989, p. 316–334].Google Scholar
  27. Leibniz, G. (1702). To Varignon, 2 feb. 1702. In Gerhardt, C. (Ed.), Leibnizens mathematische Schriften (Vol. IV, pp. 91–95). Berlin and Halle: Eidmann.Google Scholar
  28. Leibniz, G. (1710). Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali. In Gerhardt, C. (Ed.), Leibnizens mathematische Schriften (Vol. V, pp. 377–382). Berlin and Halle: Eidmann.Google Scholar
  29. Leibniz, G. (1989). La naissance du calcul différentiel. 26 articles des Acta Eruditorum. Translated from the Latin and with an introduction and notes by Marc Parmentier. With a preface by Michel Serres. Mathesis. Librairie Philosophique J. Vrin, Paris.Google Scholar
  30. Leibniz, G. W. (1672). Sämtliche Schriften und Briefe. Reihe 7. Mathematische Schriften. Band 6. pp. 1673–1676. Arithmetische Kreisquadratur. [Collected works and letters. Series VII. Mathematical writings. Vol. 6, pp. 1673–1676. Arithmetic squaring of the circle] Edited by Uwe Mayer and Siegmund Probst. With an introduction and editorial remarks in German. Akademie Verlag, Berlin, 2012. Vol. VII, 3, no. 6, 65.Google Scholar
  31. Lützen, J. (2014). 17th century arguments for the impossibility of the indefinite and the definite circle quadrature. Revue d’histoire des mathématiques, 20(2), 211–251.Google Scholar
  32. Malet, A. (1989). Studies on James Gregorie (1638–1675). Thesis (Ph.D.) Princeton University.Google Scholar
  33. Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland.Google Scholar
  34. Scott, J. (1981). The mathematical work of John Wallis, D.D., F.R.S. (1616–1703). Second edition. With a foreword by E. N. da C. Andrade. New York: Chelsea Publishing.Google Scholar
  35. Tao, T. (2014). Hilbert’s fifth problem and related topics. Graduate Studies in Mathematics 153. American Mathematical Society, Providence, RI.Google Scholar
  36. Tao, T., & Vu, V. (2016). Sum-avoiding sets in groups. Discrete Analysis. doi:10.19086/da.887, http://arxiv.org/abs/1603.03068
  37. Turnbull, H. (1939). James Gregory tercentenary memorial volume. Royal Society of Edinburgh. London: G. Bell and Sons.Google Scholar
  38. Unguru, S. (1976). Fermat revivified, explained, and regained. Francia, 4, 774–789.Google Scholar
  39. Wallis, J. (1656). Arithmetica infinitorum sive Nova Methodus Inquirendi in Curvilineorum Quadraturam, aliaque difficiliora Matheseos Problemata. Oxonii. Typis Leon Lichfield Academiae Typographi Impensis Tho. Robinson.Google Scholar
  40. Wallis, J. (2012). The correspondence of John Wallis. Vol. III (October 1668–1671). Edited by Philip Beeley and Christoph J. Scriba. Oxford: Oxford University Press.Google Scholar
  41. Wartofsky, M. (1976). The relation between philosophy of science and history of science. In R. S. Cohen, P. K. Feyerabend, & M. W. Wartofsky (Eds.), Essays in memory of Imre Lakatos (pp. 717–737)., Boston studies in the philosophy of science XXXIX Dordrecht: D. Reidel Publishing.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tiziana Bascelli
    • 1
  • Piotr Błaszczyk
    • 2
  • Vladimir Kanovei
    • 3
    • 4
  • Karin U. Katz
    • 5
  • Mikhail G. Katz
    • 5
  • Semen S. Kutateladze
    • 6
  • Tahl Nowik
    • 5
  • David M. Schaps
    • 7
  • David Sherry
    • 8
  1. 1.Lyceum Gymnasium “F. Corradini”ThieneItaly
  2. 2.Institute of MathematicsPedagogical University of CracowCracowPoland
  3. 3.IPPIMoscowRussia
  4. 4.MIITMoscowRussia
  5. 5.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  6. 6.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia
  7. 7.Department of Classical StudiesBar Ilan UniversityRamat GanIsrael
  8. 8.Department of PhilosophyNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations