Advertisement

Foundations of Science

, Volume 23, Issue 1, pp 51–73 | Cite as

The Structures of Interactions: How to Explain the Gauge Groups U(1), SU(2) and SU(3)

  • Thomas Görnitz
  • Uwe Schomäcker
Article

Abstract

It is very useful to distinguish between four types of interactions in nature: gravitation, and then electromagnetism, weak interaction and strong interaction. The mathematical structure of electromagnetism but also of weak and strong interaction could be understood as induced by a local gauge group. The associated groups are the unitary group in one dimension—U(1)—for electromagnetism, the special unitary group in two dimensions—SU(2)—for the weak interaction, and the special unitary group in three dimensions—SU(3)—for the strong interaction. The essence of this article is to give a “first-principles” explanation for the three gauge groups.

Keywords

Gauge groups Electromagnetism Weak interaction Strong interaction Protyposis Abstract quantum information (AQI) bits Dynamic layering process Dynamic layering structure Information paradox 

Notes

Acknowledgements

The authors thank Jochen Schirmer for valuable advice and interesting suggestions and the referees for their helpful hints.

References

  1. Böhm, M. (2011). Lie-Gruppen und Lie-Algebren in der Physik. Heidelberg: Springer.CrossRefGoogle Scholar
  2. Bradler, K., & Adami, Ch. (2014). The capacity of black holes to transmit quantum information. http://arXiv.org/abs/1310.7914v4.
  3. Byrd, M. (1998). Differential geometry on SU(3) with applications to three state systems, UTEXAS-HEP-97-18. http://arXiv.org/abs/math/9807032v1.
  4. Gilmore, R. (2005). Lie groups, Lie algebras, and some of their applications. Minneola, NY: Dover.Google Scholar
  5. Görnitz, Th. (1988a). Abstract quantum theory and space–time structure. I. Ur theory and Bekenstein–Hawking entropy. International Journal of Theoretical Physics, 27(5), 527–542.CrossRefGoogle Scholar
  6. Görnitz, Th. (1988b). Connections between abstract quantum theory and space–time structure II. A model of cosmological evolution. International Journal of Theoretical Physics, 27(6), 659–666.CrossRefGoogle Scholar
  7. Görnitz, Th. (1999). Quanten sind anders - Die verborgene Einheit der Welt. Heidelberg: Spektrum.Google Scholar
  8. Görnitz, Th. (2010). Quantum theory: Essential from cosmos to consciousness. Journal of Physics: Conference Series, 237(2010), 012011. doi: 10.1088/1742-6596/237/1/012011.Google Scholar
  9. Görnitz, Th. (2011a). The meaning of quantum theory: Reinterpreting the Copenhagen interpretation. Advanced Science Letters, 4, 3727–3734.CrossRefGoogle Scholar
  10. Görnitz, Th. (2011b). Deriving general relativity from considerations on quantum information. Advanced Science Letters, 4, 577–585.CrossRefGoogle Scholar
  11. Görnitz, Th. (2012). Quantum theory as universal theory of structures: Essentially from cosmos to consciousness. In Advances in Quantum Theory,. Rijeka: InTech. doi: 10.5772/34811.
  12. Görnitz, Th. (2013). What happens inside a black hole? Quantum Matter, 2(1), 21–24.CrossRefGoogle Scholar
  13. Görnitz, Th. (2014). Simplest quantum structures and the foundation of interaction. Reviews in Theoretical Science, 2(4), 289–300.CrossRefGoogle Scholar
  14. Görnitz, Th., & Görnitz, B. (2002). Der kreative Kosmos - Geist und Materie aus Information. Heidelberg: Spektrum.CrossRefGoogle Scholar
  15. Görnitz, Th., & Görnitz, B. (2016). Von der Quantenphysik zum Bewusstsein–Kosmos, Geist und Materie. Heidelberg: Springer.CrossRefGoogle Scholar
  16. Görnitz, Th., Graudenz, D., & Weizsäcker, C. F. v. (1992). Quantum field theory of binary alternatives. International Journal of Theoretical Physics, 31, 1929–1959.CrossRefGoogle Scholar
  17. Görnitz, Th., & Ruhnau, E. (1989). Connections between abstract quantum theory and space–time-structure. III. Vacuum structure and black holes. International Journal of Theoretical Physics, 28(6), 651–657.CrossRefGoogle Scholar
  18. Görnitz, Th., & Schomäcker, U. (2012). Quantum particles from quantum information. Journal of Physics: Conference Series, 380, 012025. doi: 10.1088/1742-6596/380/1/012025.Google Scholar
  19. Hawking, St. W., Perry, M. J., & Strominger, A. (2016). Soft hair on black holes. http://arXiv.org/abs/1601.00921.
  20. Knapp, A. W. (2002). Lie groups: Beyond an introduction. Boston: Birkhäuser.Google Scholar
  21. Lyre, H. (2002). Zur Wissenschaftsphilosophie moderner Eichfeldtheorien. In Proceedings of the 4th GAP conference. http://www.gap-im-netz.de/gap4Konf/Proceedings4/proc_txt.htm.
  22. Modak, S. K., Ortíz, L., Peña, I., & Sudarsky, D. (2015). Black holes: Information loss but no paradox. http://arXiv.org/abs/1406.4898v3.
  23. Moiseyev, N. (1998). Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Physics Reports, 302, 211–293.CrossRefGoogle Scholar
  24. Preskill, J. (1992). Do black holes destroy information? http://arxiv.org/abs/hep-th/9209058.
  25. Reinhard, W. P. (1982). Complex coordinates in the theory of atomic and molecular structure and dynamics. Annual Review of Physical Chemistry, 33, 223–255.CrossRefGoogle Scholar
  26. Rescigno, T. N., McCurdy, C. W., Jr., & Orel, A. E. (1978). Extensions of the complex-coordinate method to the study of resonances in many-electron systems. Physical Review A, 17, 1931–1938.CrossRefGoogle Scholar
  27. Straumann, N. (2005). Relativistische Quantentheorie – Eine Einführung in die Quantenfeldtheorie (p. 5). Berlin: Springer.Google Scholar
  28. Strocchi, F. (1966). Complex coordinates and quantum mechanics. Reviews of Modern Physics, 38, 36–40.CrossRefGoogle Scholar
  29. Weizsäcker, C. F. v. (1955). Komplementarität und Logik I. Naturwissenschaften, 42(521–529), 545–555.CrossRefGoogle Scholar
  30. Weizsäcker, C. F. v. (1958). Komplementarität und Logik II. Zeitschrift für Naturforschung, 13a, 245.Google Scholar
  31. Weizsäcker, C. F. v. (1985) Aufbau der Physik. München: Hanser; English Edition: Görnitz, Th., Lyre, H. (Eds.). C. F. v. Weizsäcker: The structure of Physics. Berlin: Springer (2006).Google Scholar
  32. Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics, XIII, 001-14.Google Scholar
  33. Yang, C. N. (1987). Square root of minus one, complex phases and Erwin Schrödinger. In: C. W. Kilmister (Ed.), Schrödinger centenary celebration of a polymath (pp. 53-64). Cambridge: University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Fachbereich PhysikGoethe Universität Frankfurt/MainMünchenGermany
  2. 2.Institut für Mathematische PhysikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations