# Emergence, Computation and the Freedom Degree Loss Information Principle in Complex Systems

## Abstract

We consider processes of emergence within the conceptual framework of the Information Loss principle and the concepts of (1) systems conserving information; (2) systems compressing information; and (3) systems amplifying information. We deal with the supposed incompatibility between emergence and computability *tout*-*court*. We distinguish between computational emergence, when computation acquires properties, and emergent computation, when computation emerges as a property. The focus is on emergence processes occurring within computational processes. Violations of Turing-computability such as non-explicitness and incompleteness are intended to represent partially the properties of phenomenological emergence, such as logical openness, given by the observer’s cognitive role; structural dynamics where change regards rules rather than only values; and multi-modelling where multiple non-equivalent models are required to model such structural dynamics. In this way, we validate, from an epistemological viewpoint, models and simulations of phenomenological emergence where the sequence of events constitutes the natural, analogical non-Turing computation which a cognitive complex system can reproduce through learning. Reproducibility through learning is different from Turing-like computational iteration. This paper aims to open a new, non-reductionist understanding of the conceptual relationship between emergence and computability.

## Keywords

Computational Emergence Information Iteration Uniqueness Violations## References

- Acosta, D., Fernandez de Cordoba, P., Isidro, J. M., & Santander, J. L. G. (2012). An entropic picture of emergent quantum mechanics.
*International Journal of Geometric Methods in Modern Physics,**9*(5), 1250048–1250053.CrossRefGoogle Scholar - Altman, R. B., Dunker, A. K., & Hunter, L. (2014).
*Biocomputing 2014: Proceedings of the pacific symposium*. Singapore: World Scientific.Google Scholar - Anderson, P. W. (1972). More is different: Broken symmetry and the nature of the hierarchical structure of sciences.
*Science,**177*(4047), 393–396.CrossRefGoogle Scholar - Anderson, N. G., & Bhanja, S. (2014).
*Field-coupled nanocomputing: Paradigms, progress, and perspectives (lecture notes in computer science/theoretical computer science and general issues)*. New York: Springer.Google Scholar - Aoki, I. (1982). A simulation study on the schooling mechanism in fish.
*Bulletin of the Japanese Society of Scientific Fisheries,**48*, 1081–1088.CrossRefGoogle Scholar - Ballarini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study.
*Proceedings of the National Academy of Science,**105*(4), 1232–1237.CrossRefGoogle Scholar - Barabási, A. L. (2011).
*Bursts: The hidden patterns behind everything we do, from your e-mail to bloody crusades*. London: Plume.Google Scholar - Batterman, R. W. (2011). Emergence, singularities, and symmetry breaking.
*Foundations of Physics,**41*(6), 1031–1050.CrossRefGoogle Scholar - Bedau, M. (2011). Weak emergence and computer simulation. In P. Humphreys & C. Imbert (Eds.),
*Models, simulations, and representations*(pp. 91–114). New York: Routledge.Google Scholar - Bell, J. S. (1987).
*Speakable and unspeakable in quantum mechanics*(pp. 52–62). Cambridge: Cambridge University Press.Google Scholar - Bianconi, G., & Barabási, A. (2001). Bose–Einstein condensation in complex networks.
*Physical Review Letters,**86*(24), 5632–5635.CrossRefGoogle Scholar - Blasone, M., Jizba, P., & Vitiello, G. (2001). Dissipation and quantization.
*Physics Letters A,**287*(3), 205–210.CrossRefGoogle Scholar - Brunner, K. A. (2002). What’s emergent in emergent computing? In R. Trappl (Ed.),
*Cybernetics and systems 2002: Proceedings of the 16th European meeting on cybernetics and systems research*(pp. 189–192). Vienna: Austrian Society for Cybernetics Study.Google Scholar - Buchanan, M. (2000).
*Ubiquity*. London: Wiedenfield & Nicholson.Google Scholar - Burks, A. W. (Ed.). (1970).
*Essays on cellular automata*. Urbana (IL): Illinois University Press.Google Scholar - Butterfield, J. (2011). Emergence, reduction and supervenience: A varied landscape.
*Foundations of Physics,**41*(6), 920–959.CrossRefGoogle Scholar - Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., et al. (2010). Scale-free correlations in starling flocks.
*Proceeding of the National Academy of Sciences of the United States of America,**107*(26), 11865–11870.CrossRefGoogle Scholar - Chalmers, D. J. (2006). Strong and weak emergence. In P. Davies & P. Clayton (Eds.),
*The re-emergence of emergence*(pp. 244–256). Oxford: Oxford University Press.Google Scholar - Claude, C., & Longo, G. (2016). The deluge of spurious correlations in big data,
*Found. of Sc*., First online http://www.di.ens.fr/users/longo/files/BigData-Calude-LongoAug21.pdf. 07 Mar. - Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction.
*Physica D,**75*, 11–54.CrossRefGoogle Scholar - Crutchfield, J. P. (1999). Is anything ever new? Considering emergence. In G. A. Cowan, D. Pines, & D. Meltzer (Eds.),
*Complexity: Metaphors, models, and reality*(pp. 515–537). Cambridge (MA): Perseus Books.Google Scholar - De Finetti, B. (2008).
*Philosophical lectures on probability english translation of B. de Finetti’s: Filosofia della probabilitá, synthese library*. Vol. 340, New York: Springer.Google Scholar - Erl, T., Puttini, R., & Mahmood, Z. (2013).
*Cloud computing: Concepts, technology and architecture*. New York: Prentice Hall.Google Scholar - Faloutsos, C., & Megalooikonomoum, V. (2007). On data mining, compression, and Kolmogorov complexity.
*Data Mining and Knowledge Discovery,**15*(1), 3–20.CrossRefGoogle Scholar - Fokkink, W. (2014).
*Distributed algorithms: An intuitive approach*. Cambridge (MA): MIT Press.Google Scholar - Forrest, S. (1990).
*Emergent computation*. Cambridge (MA): MIT Press.Google Scholar - Gardner, M. (1970). Mathematical games—The fantastic combinations of John Conway’s new solitaire game “life”.
*Scientific American,**223*, 120–123.CrossRefGoogle Scholar - Goldstein, J. (1999). Emergence as a construct: History and issues.
*Emergence,**1*(1), 49–72.CrossRefGoogle Scholar - Gorban, A. N., Smirnova, E. V., & Tyukina, T. A. (2009). General laws of adaptation to environmental factors: From ecological stress to financial crisis.
*Mathematical Modelling of Natural Phenomena,**4*(6), 1–53.CrossRefGoogle Scholar - Gorban, A. N., Smirnova, E. V., & Tyukina, T. A. (2010). Correlations, risk and crisis: From physiology to finance.
*Physica A,**389*(16), 3193–3217.CrossRefGoogle Scholar - Haken, H. (1987). Synergetics: An approach to self-organization. In F. E. Yates (Ed.),
*Self-organizing systems: The emergence of order*(pp. 417–434). New York: Plenum.CrossRefGoogle Scholar - Haken, H. (1988).
*Information and self-organization. A macroscopic approach to complex systems*. Berlin: Springer.CrossRefGoogle Scholar - Hoekstra, A. G., Kroc, J., & Sloot, P. M. A. (2010).
*Simulating complex systems by cellular automata*. Berlin: Springer.Google Scholar - Hosni, H., Fedel, M., & Montagna, F. (2011). A logical characterization of coherence for imprecise probabilities.
*International Journal of Approximate Reasoning,**52*(8), 1147–1170.CrossRefGoogle Scholar - Ishii, H., & Morishita, S. (2010). A learning algorithm for the simulation of pedestrian flow by cellular automata. In S. Bandini & S. Manzoni (Eds.),
*Cellular automata, lecture notes in computer science*(pp. 465–473). Berlin: Springer.Google Scholar - Kitto, K. (2014). A contextualised general systems theory.
*Systems,**2*(4), 541–565.CrossRefGoogle Scholar - Korotkikh, V. (2014).
*A mathematical structure for emergent computation*. Dordrecht: Springer.Google Scholar - Kroger, B. (2014).
*Hermann Haken: From the laser to synergetics: A scientific biography of the early years*. New York: Springer.Google Scholar - Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. In S. Forrest (Ed.),
*Emergent computation*. Amsterdam: North-Holland.Google Scholar - Laughlin, R. B., Pines, D., Schmalian, J., Stojkovic, B. P., & Wolynes, P. (2000). The middle way.
*Proceedings of the National Academy of Sciences*,*97*(1), 32–37. http://www.pnas.org/content/97/1/32.full.pdf. - Li, M., & Vitányi, P. M. B. (2009).
*An introduction to Kolmogorov complexity and its applications*. New York: Springer.Google Scholar - Licata, I. (2006). General system theory, link-quantum semantics and fuzzy sets. In G. Minati, E. Pessa, & M. Abram (Eds.),
*Systemics of emergence: Research and development*(pp. 723–734). New York: Springer.CrossRefGoogle Scholar - Licata, I. (2008a).
*La logica aperta della mente*. Torino: Codice Edizioni.Google Scholar - Licata, I. (2008b). Emergence and computation to the edge of classical and quantum systems. In I. Licata & A. Sakaji (Eds.),
*Physics of emergence and organization*(pp. 1–25). Singapore: World Scientific.CrossRefGoogle Scholar - Licata, I. (2010). Living with radical uncertainty: The exemplary case of folding protein. In I. Licata & A. Sakaji (Eds.),
*Crossing in complexity. Interdisciplinary application of physics in biological and social systems*(pp. 1–10). New York, NY: Nova Publishers.Google Scholar - Licata, I., & Minati, G. (2010). Creativity as cognitive design—The case of mesoscopic variables in meta-structures. In Alessandra M. Corrigan (Ed.),
*Creativity: Fostering, measuring and contexts*(pp. 95–107). New York: Nova Publishers.Google Scholar - Liu, X. F., & Sun, C. P. (2001). Consequences of ‘t Hooft’s equivalence class theory and symmetry by large coarse graining.
*Journal of Mathematical Physics,**42*(8), 3665–3672.CrossRefGoogle Scholar - MacLennan, B. J. (2004). Natural computation and non-Turing models of computation.
*Theoretical Computer Science,**317*(1–3), 115–145.CrossRefGoogle Scholar - MacLennan, B. (2012). Molecular coordination of hierarchical self-assembly.
*Nano Communication Networks,**3*(2), 116–128.CrossRefGoogle Scholar - Minati, G., & Licata, I. (2012). Meta-structural properties in collective behaviours.
*The International Journal of General Systems,**41*(3), 289–311.CrossRefGoogle Scholar - Minati, G., & Licata, I. (2013). Emergence as mesoscopic coherence.
*Systems,**1*(4), 50–65.CrossRefGoogle Scholar - Minati, G., & Pessa, E. (2006).
*Collective beings*. New York: Springer.Google Scholar - Minati, G., Penna, M. P., & Pessa, E. (1998). Thermodynamic and logical openness in general systems.
*Systems Research and Behavioral Science,**15*(3), 131–145.CrossRefGoogle Scholar - Minati, G., Licata, I., & Pessa, E. (2013). Meta-structures: The search of coherence in collective behaviours (without physics). In A. Graudenzi, G. Caravagna, G. Mauri, & M. Antoniotti (Eds.)
*Wivace 2013*—*Proceedings of the Italian workshop on artificial life and evolutionary computation*(pp. 35–42). Electronic proceedings in theoretical computer science. http://rvg.web.cse.unsw.edu.au/eptcs/paper.cgi?Wivace2013.6. Accessed Jan 2016. - Nagatani, T. (2012). Four species CA model for facing pedestrian traffic at rush hour.
*Applied Mathematical Modelling,**36*(2), 702–711.CrossRefGoogle Scholar - Pacheco, P. (2011).
*An introduction to parallel programming*. Burlington (MA): Morgan Kaufmann.Google Scholar - Pastor-Satorras, R., & Vespignani, A. (2004).
*Evolution and structure of the internet: A statistical physics approach*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Pavlov, Y. P., & Andreev, R. D. (2013).
*Decision control, management, and support in adaptive and complex systems: Quantitative models*. Hershey (PA): IGI global.CrossRefGoogle Scholar - Pessa, E. (2008). Phase transitions in biological matter. In I. Licata & A. Sakaji (Eds.),
*Physics of emergence and organization*(pp. 165–228). Singapore: World Scientific.CrossRefGoogle Scholar - Pinto, S. E., Lopes, S. R., & Viana, R. L. (2002). Collective behavior in a chain of van der Pol oscillators with power-law coupling.
*Physica A,**303*(3), 339–356.CrossRefGoogle Scholar - Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model.
*Computer Graphics,**21*(4), 25–34.CrossRefGoogle Scholar - Ronald, E. M. A., Sipper, M., & Capcarrère, M. S. (1999). Design, observation, surprise! A test for emergence.
*Artificial Life,**5*(3), 225–239.CrossRefGoogle Scholar - Ryan, A. J. (2006). Emergence is coupled to scope, not level.
*Complexity,**67*(2), 67–77.Google Scholar - Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., et al. (2012). Anticipating critical transitions.
*Science,**338*(6105), 344–348.CrossRefGoogle Scholar - Schmidt, D., Stal, M., Rohnert, H., & Buschmann, F. (2000).
*Pattern-oriented software architecture volume 2: Patterns for concurrent and networked objects*. New York: Wiley.Google Scholar - Sethna, J. P. (2006).
*Entropy, order parameters and complexity*. Oxford: Oxford University Press.Google Scholar - Shafee, F. (2010). Organization and complexity in a nested hierarchical spin-glass like social space.
*Electronic Journal of Theoretical Physics (EJTP),**7*(24), 93–130.Google Scholar - Simon, M. (2005).
*Emergent computation: Emphasizing bioinformatics*. New York: Springer.Google Scholar - Soare, R. I. (2009). Turing oracle machines, online computing, and three displacements in computability theory.
*Annals of Pure and Applied Logic,**160*(3), 368–399.CrossRefGoogle Scholar - Sornette, D. (2006).
*Critical phenomena in natural sciences: Chaos, fractals, self-organization and disorder: Concepts and tools*. Heidelberg: Springer.Google Scholar - Syropoulos, A. (2008).
*Hypercomputation. Computing beyond the Church–Turing barrier*. New York: Springer.CrossRefGoogle Scholar - ‘t Hooft, G. (1993). Dimensional reduction in quantum gravity. In A. Ali, J. Ellis, & S. Randjbar-Daemi (Eds.)
*Salamfestschrift: A collection of talks*.*Series in 20th century physics, Vol*.*4*(pp. 284–296). Singapore: World Scientific.Google Scholar - ‘t Hooft, G. (2015).
*The cellular automaton interpretation of quantum mechanics*. https://arxiv.org/pdf/1405.1548v3.pdf [quant-ph]. - Takagi, T., Moritomi, Y., Iwata, J., Nakamine, H., & Sannomiya, N. (2004). Mathematical model of fish schooling behaviour in a set-net.
*ICES Journal of Marine Science,**61*(7), 1214–1223.CrossRefGoogle Scholar - Toby, O. (2006). Hypercomputation: Computing more than the Turing machine.
*Applied Mathematics and Computation,**178*, 143–153.CrossRefGoogle Scholar - Vicsek, T., & Zafeiris, A. (2012). Collective motion.
*Physics Reports,**517*(3–4), 71–140.CrossRefGoogle Scholar - Vitiello, G. (2001).
*My double unveiled*. Amsterdam: Benjamins.CrossRefGoogle Scholar - Von Foerster, H. (1984).
*Observing systems*. Seaside (CA): Intersystems Publications.Google Scholar - Waldner, J. B. (2010).
*Nanocomputers and swarm intelligence*. Hoboken (NJ): Wiley.Google Scholar - Wolfram, S. (2002).
*A new kind of science*. Champaign (IL): Wolfram Media Inc.Google Scholar - Zhang, W.-B. (1991). The Haken slaving principle and time scale in economic analysis.
*Springer Series in Synergetics,**53*, 193–212.CrossRefGoogle Scholar