Foundations of Science

, Volume 22, Issue 4, pp 799–825 | Cite as

Forensic Science: Current State and Perspective by a Group of Early Career Researchers

  • Marie Morelato
  • Mark Barash
  • Lucas Blanes
  • Scott Chadwick
  • Jessirie Dilag
  • Unnikrishnan Kuzhiumparambil
  • Katie D. Nizio
  • Xanthe Spindler
  • Sebastien Moret
Article

Abstract

Forensic science and its influence on policing and the criminal justice system have increased since the beginning of the twentieth century. While the philosophies of the forensic science pioneers remain the pillar of modern practice, rapid advances in technology and the underpinning sciences have seen an explosion in the number of disciplines and tools. Consequently, the way in which we exploit and interpret the remnant of criminal activity are adapting to this changing environment. In order to best exploit the trace, an interdisciplinary approach to both research and investigation is required. In this paper, nine postdoctoral research fellows from a multidisciplinary team discuss their vision for the future of forensic science at the crime scene, in the laboratory and beyond. This paper does not pretend to be exhaustive of all fields of forensic science, but describes a portion of the postdoctoral fellows’ interests and skills.

Keywords

Trace Decomposition odour profiling Fingermark detection Forensic intelligence Ignitable liquid residues Forensic DNA analysis Investigative genetics Portable analytical instruments Sports drug testing 

Notes

Acknowledgments

The authors would like to thank the University of Technology Sydney (UTS) for the Centre for Forensic Science Research Strength block funding, the Australian Federal Police (AFP) for Forensic Science Sponsorship, the Bulgin Fund for Forensic Science research, RSC Publication for the use of Fig. 1 and Professors Claude Roux, Shari Forbes, Peter Gunn and Shanlin Fu for their constructive feedback on the manuscript. We also would like to thank the two anonymous reviewers for their insightful comments that allowed us to improve the quality of the manuscript. Drs. Jessirie Dilag and Xanthe Spindler thank the Australian Research Council (ARC), the UTS Chancellor’s postdoctoral fellowship, the AFP, Victoria Police, partner and chief investigators for their ongoing support of ARC Linkage Project LP130101019. Dr. Marie Morelato would like to gratefully thank the AFP and UTS Chancellor’s postdoctoral fellowship. Dr. Lucas Blanes would like to thank the Defence Science and Technology Group (DSTG) of the Department of Defence of Australia (Project MylP#6077). Dr. Sébastien Moret would like to thank the Swiss National Science Foundation (SNSF) for the grant provided to support his research (Early Postdoc.Mobility grant no. P2LAP1_151777). Dr. Katie Nizio wishes to acknowledge the financial support of Prof Shari Forbes’ ARC Future Fellowship (FT110100753) and ARC Linkage Infrastructure, Equipment and Facilities Grant (LE150100015) including partner and chief investigators. Dr. Unnikrishnan Kuzhiumparambil would like to thank Anti-Doping Research Program (ADRP) of the Australian Government, Department of Regional Australia, Local Government, Arts and Sport for the grant provided to support this research (20-UTS-2011-12).

References

  1. Ackermann, K., Ballantyne, K. N., & Kayser, M. (2010). Estimating trace deposition time with circadian biomarkers: A prospective and versatile tool for crime scene reconstruction. International Journal of Legal Medicine, 124(5), 387–395.CrossRefGoogle Scholar
  2. Adahchour, M., Beens, J., Vreuls, R., & Brinkman, U. (2006). Recent developments in comprehensive two-dimensional gas chromatography (GC×GC) III. Applications for petrochemicals and organohalogens. Trends in Analytical Chemistry, 25(7), 726–741.CrossRefGoogle Scholar
  3. Agapiou, A., Zorba, E., Mikedi, K., McGregor, L., Spiliopoulou, C., & Statheropoulos, M. (2015). Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption–comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. Analytica Chimica Acta, 883, 99–108.CrossRefGoogle Scholar
  4. Almirall, J. R., & Furton, K. G. (2004). Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris. Journal of Analytical and Applied Pyrolysis, 71(1), 51–67.CrossRefGoogle Scholar
  5. ASTM E1386-15. (2015). Standard practice for separation of ignitable liquid residues from fire debris samples by solvent extraction. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  6. ASTM E1388-12. (2012). Standard practice for sampling of headspace vapors from fire debris samples. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  7. ASTM E1412-16. (2016). Standard practice for separation of ignitable liquid residues from fire debris samples by passive headspace concentration with activated charcoal. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  8. ASTM E1413-13. (2013). Standard practice for separation of ignitable liquid residues from fire debris samples by dynamic headspace concentration. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  9. ASTM E1618-14. (2014). Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  10. ASTM E2154-15a. (2015). Standard practice for separation and concentration of ignitable liquid residues from fire debris samples by passive headspace concentration with solid phase microextraction (SPME). In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  11. ASTM E2881-13. (2013). Standard test method for extraction and derivatization of vegetable oils and fats from fire debris and liquid samples with analysis by gas chromatography-mass spectrometry. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.Google Scholar
  12. Attard-Montalto, N., Ojeda, J. J., Reynolds, A., Ismail, M., Bailey, M., Doodkorte, L., et al. (2014). Determining the chronology of deposition of natural finger marks and inks on paper using secondary ion mass spectrometry. Analyst, 139, 4641–4653.CrossRefGoogle Scholar
  13. Baechler, S., Terrasse, V., Pujol, J.-P., Fritz, T., Ribaux, O., & Margot, P. (2013). The systematic profiling of false identity documents: Method validation and performance evaluation using seizures known to originate from common and different source. Forensic Science International, 232(1–3), 180–190.CrossRefGoogle Scholar
  14. Baerncopf, J., & Hutches, K. (2014). A review of modern challenges in fire debris analysis. Forensic Science International, 244, e12–e20.CrossRefGoogle Scholar
  15. Baskin, D., & Sommers, I. (2010). The influence of forensic evidence on the case outcomes of homicide incidents. Journal of Criminal Justice, 38(6), 1141–1149.CrossRefGoogle Scholar
  16. Beens, J., Blomberg, J., & Schoenmakers, P. J. (2000). Proper tuning of comprehensive two-dimensional gas chromatography (GC×GC) to optimize the separation of complex oil fractions. Journal of High Resolution Chromatography, 23(3), 182–188.CrossRefGoogle Scholar
  17. Bhoelai, B., de Jong, B. J., de Puit, M., & Sijen, T. (2011). Effect of common fingerprint detection techniques on subsequent STR profiling. Forensic Science International: Genetics Supplement Series, 3, e429–e430.Google Scholar
  18. Borsting, C., & Morling, N. (2015). Next generation sequencing and its applications in forensic genetics. Forensic Science International: Genetics Supplement Series, 18, 78–89.CrossRefGoogle Scholar
  19. Braasch, K., de la Hunty, M., Deppe, J., Spindler, X., Cantu, A. A., Maynard, P., et al. (2013). Nile red: Alternative to physical developer for the detection of latent finger marks on wet porous surfaces? Forensic Science International, 230(1–3), 74–80.CrossRefGoogle Scholar
  20. Brasseur, C., Dekeirsschieter, J., Schotsmans, E. M., de Koning, S., Wilson, A. S., Haubruge, E., et al. (2012). Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. Journal of Chromatography A, 1255, 163–170.CrossRefGoogle Scholar
  21. Bright, N. J., Willson, T. R., Driscoll, D. J., Reddy, S. M., Webb, R. P., Bleay, S., et al. (2013). Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions. Forensic Science International, 230, 81–86.CrossRefGoogle Scholar
  22. Brodeur, J.-P. (2005). L’enquête criminelle. Criminologie, 38(2), 39–64.CrossRefGoogle Scholar
  23. Chadwick, S., Xiao, L., Maynard, P., Lennard, C., Spindler, X., & Roux, C. (2014). PolyCyano UV: An investigation into a one-step luminescent cyanoacrylate fuming process. Australian Journal of Forensic Sciences, 46(4), 471–484.CrossRefGoogle Scholar
  24. Chalmers, J. M., Edwards, H. G. M., & Hargreaves, M. D. (2012). Infrared and Raman spectroscopy in forensic science. Hoboken: Wiley.CrossRefGoogle Scholar
  25. Champod, C., Lennard, C., Margot, P., & Stoilovic, M. (2004). Fingerprints and other ridge skin impressions. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  26. Choi, B. C. K. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine, 29(6), 351–364.Google Scholar
  27. Coyne, J. W., & Bell, P. (2011). The role of strategic intelligence in anticipating transnational organised crime: A literary review. International Journal of Law, Crime and Justice, 39(1), 60–78.CrossRefGoogle Scholar
  28. de la Hunty, M., Moret, S., Chadwick, S., Lennard, C., Spindler, X., & Roux, C. (2015). Understanding physical developer (PD): Part I—Is PD targeting lipids? Forensic Science International, 257, 481–487.CrossRefGoogle Scholar
  29. de la Hunty, M., Spindler, X., Chadwick, S., Lennard, C., & Roux, C. (2014). Synthesis and application of an aqueous nile red microemulsion for the development of finger marks on porous surfaces. Forensic Science International, 244, e48–e55.CrossRefGoogle Scholar
  30. Dekeirsschieter, J., Stefanuto, P. H., Brasseur, C., Haubruge, E., & Focant, J. F. (2012). Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS). PLoS One, 7(6), e39005.CrossRefGoogle Scholar
  31. Dilag, J., Kobus, H., & Ellis, A. V. (2009). Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection. Forensic Science International, 187, 97–102.CrossRefGoogle Scholar
  32. Dilag, J., Kobus, H., & Ellis, A. V. (2013). CdS/polymer nanocomposites synthesized via surface initiated RAFT polymerization for the fluorescent detection of latent fingermarks. Forensic Science International, 228, 105–114.CrossRefGoogle Scholar
  33. Drapel, V., Bécue, A., Champod, C., & Margot, P. (2009). Identification of promising antigenic components in latent fingermark residues. Forensic Science International, 184, 47–53.CrossRefGoogle Scholar
  34. Eckenrode, B. A. (2001). Environmental and forensic applications of field-portable GC–MS: An overview. Journal of the American Society for Mass Spectrometry, 12, 683–693.CrossRefGoogle Scholar
  35. Elkin, K. R. (2014). Portable, fully autonomous, ion chromatography system for on-site analyses. Journal of Chromatography A, 1352, 38–45.CrossRefGoogle Scholar
  36. Epple, R., Blanes, L., Beavis, A., Roux, C., & Doble, P. (2010). Analysis of amphetamine type substances by capillary zone electrophoresis using capacitively coupled contactless conductivity detection. Electrophoresis, 31(15), 2608–2613.CrossRefGoogle Scholar
  37. Esseiva, P., Ioset, S., Anglada, F., Gasté, L., Ribaux, O., Margot, P., et al. (2007). Forensic drug intelligence: An important tool in law enforcement. Forensic Science International, 167(2–3), 247–254.CrossRefGoogle Scholar
  38. Farrugia, K. J., Deacon, P., & Fraser, J. (2014). Evaluation of Lumicyano™ cyanoacrylate fuming process for the development of latent fingermarks on plastic carrier bags by means of a pseudo operational comparative trial. Science & Justice, 54, 126–132.CrossRefGoogle Scholar
  39. Fierer, N., Lauber, C. L., Zhou, N., McDonald, D., Costello, E. K., & Knight, R. (2010). Forensic identification using skin bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6477–6481.CrossRefGoogle Scholar
  40. Fleming, R. I., & Harbison, S. (2010). The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Science International: Genetics Supplement Series, 4(4), 244–256.CrossRefGoogle Scholar
  41. Focant, J.-F., Stefanuto, P. H., Brasseur, C., Dekeirsschieter, J., Haubruge, E., Schotsmans, E. M., et al. (2013). Forensic cadaveric decomposition profiling by GC×GC–TOFMS analysis of VOCs. Chemical Bulletin of Kazakh National University, 4, 177–186.CrossRefGoogle Scholar
  42. Forbes, S. L., Perrault, K. A., Stefanuto, P. H., Nizio, K. D., & Focant, J. F. (2014). Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One, 9(11), e113681.CrossRefGoogle Scholar
  43. Fox, A., Gittos, M., Harbison, S. A., Fleming, R., & Wivell, R. (2014). Exploring the recovery and detection of messenger RNA and DNA from enhanced fingermarks in blood. Science & Justice, 54(3), 192–198.CrossRefGoogle Scholar
  44. Frysinger, G. S., & Gaines, R. B. (2002). Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. Journal of Forensic Sciences, 47, 471–482.Google Scholar
  45. Frysinger, G. S., Gaines, R. B., & Reddy, C. M. (2002). GC×GC—A new analytical tool for environmental forensics. Environmental Forensics, 3(1), 27–34.Google Scholar
  46. Fu, S., Luong, S., Pham, A., Charlton, N., & Kuzhiumparambil, U. (2014). Bioanalysis of urine samples after manipulation by oxidizing chemicals: Technical considerations. Bioanalysis, 6(11), 1543–1561.CrossRefGoogle Scholar
  47. Gaines, R. B., Frysinger, G. S., Hendrick-Smith, M. S., & Stuart, J. D. (1999). Oil spill source identification by comprehensive two-dimensional gas chromatography. Environmental Science and Technology, 33(12), 2106–2112.CrossRefGoogle Scholar
  48. Gaines, R. B., Frysinger, G. S., Reddy, C. M., & Nelson, R. K. (2007). Oil spill source identification by comprehensive two-dimensional gas chromatography (GCxGC). In Z. Wang & S. A. Stout (Eds.), Oil spill environmental forensics: Fingerprinting and source identification (pp. 169–206). Burlington, MA: Academic Press.CrossRefGoogle Scholar
  49. Girod, A., Ramotowski, R., & Weyermann, C. (2012). Composition of fingermark residue: A qualitative and quantitative review. Forensic Science International, 223, 10–24.CrossRefGoogle Scholar
  50. Grossrieder, L., Albertetti, F., Stoffel, K., & Ribaux, O. (2013). Des données aux connaissances, un chemin difficile: Réflexion sur la place du data mining en analyse criminelle. Revue Internationale de Criminologie et de Police Technique et Scientifique, LXVI(1), 99–116.Google Scholar
  51. Gunn, P., Walsh, S., & Roux, C. (2014). The nucleic acid revolution continues—Will forensic biology become forensic molecular biology? Frontiers in Genetics, 5, 44.CrossRefGoogle Scholar
  52. Guo, Y., Lu, M. Q., & Long, Y. T. (1997). Ion mobility spectra of selected amines and their application in field testing with the use of a portable IMS device. Field Analytical Chemistry and Technology., 1(4), 195–211.CrossRefGoogle Scholar
  53. Hahn, W., & Ramotowski, R. (2012). Evaluation of a novel one-step fluorescent cyanoacrylate fuming process for latent print visualization. Journal of Forensic Identification, 62(3), 279–298.Google Scholar
  54. Hazarika, P., Jickells, S. M., & Russell, D. A. (2009). Rapid detection of drug metabolites in latent fingermarks. Analyst, 134, 93–96.CrossRefGoogle Scholar
  55. Hazarika, P., Jickells, S. M., Wolff, K., & Russell, D. A. (2008). Imaging of latent fingerprints through the detection of drugs and metabolites. Angewandte Chemie International Edition, 47, 10167–10170.CrossRefGoogle Scholar
  56. Hazarika, P., Jickells, S. M., Wolff, K., & Russell, D. A. (2010). Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark. Analytical Chemistry, 82, 9150–9154.CrossRefGoogle Scholar
  57. Hofstetter, O., Hofstetter, H., Schurig, V., Wilchek, M., & Green, B. S. (1998). Antibodies can recognize the chiral center of free α-amino acids. Journal of the American Chemical Society, 120(13), 3251–3252.CrossRefGoogle Scholar
  58. Hoile, R., Banos, C., Colella, M., Walsh, S. J., & Roux, C. (2010). Gamma irradiation as a biological decontaminant and its effect on common fingermark detection techniques and DNA profiling. Journal of Forensic Sciences, 55(1), 171–177.CrossRefGoogle Scholar
  59. Jaber, N., Lesniewski, A., Gabizon, H., Shenawi, S., Mandler, D., & Almog, J. (2012). Visualization of latent fingermarks by nanotechnology: Reversed development on paper—A remedy to the variation in sweat composition. Angewandte Chemie International Edition, 51(49), 12224–12227.CrossRefGoogle Scholar
  60. Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122.CrossRefGoogle Scholar
  61. Kayser, M. (2015). Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics Supplement Series, 18, 33–48.CrossRefGoogle Scholar
  62. Kayser, M., & Schneider, P. M. (2009). DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations. Forensic Science International: Genetics Supplement Series, 3, 154–161.CrossRefGoogle Scholar
  63. Kirk, P. L. (1963). The ontogeny of criminalistics. The Journal of Criminal Law, Criminology and Police Science, 54, 235–238.CrossRefGoogle Scholar
  64. Kirkbride, K. P., Yap, S. M., Andrews, S., Pigou, P. E., Dinan, A. C., Peddie, F. L., et al. (1992). Microbial degradation of petroleum hydrocarbons: Implications for arson residue analysis. Journal of Forensic Sciences, 37, 1585–1599.CrossRefGoogle Scholar
  65. Korytár, P., Leonards, P. E. G., de Boer, J., & Brinkman, U. A. T. (2002). High-resolution separation of polychlorinated biphenyls by comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 958(1–2), 203–218.CrossRefGoogle Scholar
  66. Kuzhiumparambil, U., & Fu, S. (2013a). Effect of hydrogen peroxide oxidizing systems on human urinary steroid profiles. Analytical Methods, 5, 4402–4408.CrossRefGoogle Scholar
  67. Kuzhiumparambil, U., & Fu, S. (2013b). Effect of oxidising adulterants on human urinary steroid profiles. Steroids, 78(2), 288–296.CrossRefGoogle Scholar
  68. Kuzhiumparambil, U., Watanabe, S., & Fu, S. (2014). Oxidation of testosterone by permanganate and its implication in sports drug testing. New Journal of Chemistry, 39, 1597–1602.CrossRefGoogle Scholar
  69. Laurin, N., Célestin, F., Clark, M., Wilkinson, D., Yamashita, B., & Frégeau, C. (2015). New incompatibilities uncovered using the Promega DNA IQ™ chemistry. Forensic Science International, 257, 134–141.CrossRefGoogle Scholar
  70. Lax, S., Hampton-Marcell, J. T., Gibbons, S. M., Colares, G. B., Smith, D., Eisen, J. A., et al. (2015). Forensic analysis of the microbiome of phones and shoes. Microbiome, 3, 21.CrossRefGoogle Scholar
  71. Leggett, R., Lee-Smith, E. E., Jickells, S. M., & Russell, D. A. (2007). “Intelligent” fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles. Angewandte Chemie International Edition, 46, 4100–4103.CrossRefGoogle Scholar
  72. Lloyd, A. E., Blanes, L., Beavis, A., Roux, C., & Doble, P. (2011). A rapid method for the in-field analysis of amphetamines employing the Agilent Bioanalyzer. Analytical Methods, 3, 1535–1539.CrossRefGoogle Scholar
  73. Lloyd, A. E., Russell, M., Blanes, L., Doble, P., & Roux, C. (2013). Lab-on-a-chip screening of methamphetamine and pseudoephedrine in samples from clandestine laboratories. Forensic Science International, 228(1–3), 8–14.CrossRefGoogle Scholar
  74. Lloyd, A. E., Russell, M., Blanes, L., Somerville, R., Doble, P., & Roux, C. (2014). The application of portable microchip electrophoresis for the screening and comparative analysis of synthetic cathinone seizures. Forensic Science International, 242, 16–23.CrossRefGoogle Scholar
  75. Ludwig, A., & Fraser, J. (2013). Effective use of forensic science in volume crime investigations: Identifying recurring themes in the literature. Science & Justice, 54(1), 81–88.CrossRefGoogle Scholar
  76. Luong, S., & Fu, S. (2014). Detection and identification of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide in nitrite adulterated urine specimens containing morphine and its glucuronides. Drug Testing and Analysis, 6, 277–287.CrossRefGoogle Scholar
  77. Luong, S., Kuzhiumparambil, U., & Fu, S. (2015). Elucidation of markers for monitoring morphine and its analogs in urine adulterated with pyridinium chlorochromate. Bioanalysis, 7, 2283–2295.CrossRefGoogle Scholar
  78. Luong, S., Shimmon, R., Hook, J., & Fu, S. (2012). 2-Nitro-6-monoacetylmorphine: potential marker for monitoring the presence of 6-monoacetylmorphine in urine adulterated with potassium nitrite. Analytical and Bioanalytical Chemistry, 403, 2057–2063.CrossRefGoogle Scholar
  79. Luong, S., Ung, A. T., Kalman, J., & Fu, S. (2014). Transformation of codeine and codeine-6-glucuronide to opioid analogues by urine adulteration with pyridinium chlorochromate: Potential issue for urine drug testing. Rapid Communications in Mass Spectrometry, 28(14), 1609–1620.CrossRefGoogle Scholar
  80. Mai, T. D., Pham, T. T., Pham, H. V., Saiz, J., Ruiz, C. G., & Hauser, P. C. (2013). Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection. Analytical Chemistry, 85(4), 2333–2339.CrossRefGoogle Scholar
  81. Mangle, M. F., Xu, X., & de Puit, M. (2015). Performance of 1,2-indanedione and the need for sequential treatment of fingerprints. Science & Justice, 55(5), 343–346.CrossRefGoogle Scholar
  82. Mareck, U., Geyer, H., Opfermann, G., Thevis, M., & Schanzer, W. (2008). Factors influencing the steroid profile in doping control analysis. Journal of Mass Spectrometry, 43(7), 877–891.CrossRefGoogle Scholar
  83. Margot, P. (2011a). Commentary on the need for a research culture in the forensic sciences. UCLA Law Review, 58(3), 795–801.Google Scholar
  84. Margot, P. (2011b). Forensic science on trial—What is the law of the land? Australian Journal of Forensic Sciences, 43(2–3), 89–103.CrossRefGoogle Scholar
  85. Margot, P. (2014). Traçologie: La trace, vecteur fondamental de la police scientifique. Revue Internationale de Criminologie et de Police Technique et Scientifique, LXVI(1), 72–97.Google Scholar
  86. MarketsandMarkets (2014). Marketsandmarkets. Human Identification Market by Technology (Next Generation Sequencing, Rapid DNA Analysis, Capillary Electrophoresis, PCR), Application (Forensics, Paternity Testing), DNA Amplification, Quantification, Extraction, Services, & Software - Forecast to 2018 May 2014. http://www.marketsandmarkets.com/Market-Reports/human-identification-market-100607777.html. Accessed 23 April 2015.
  87. Marriott, C., Lee, R., Wilkes, Z., Comber, B., Spindler, X., Roux, C., et al. (2014). Evaluation of fingermark detection sequences on paper substrates. Forensic Science International, 236, 30–37.CrossRefGoogle Scholar
  88. Marriott, P. J., Massil, T., & Hügel, H. (2004). Molecular structure retention relationships in comprehensive two-dimensional gas chromatography. Journal of Separation Science, 27(15–16), 1273–1284.CrossRefGoogle Scholar
  89. McMahon, G. (2007). Analytical instrumentation a guide to laboratory: Portable and miniaturized instruments. Hoboken: Wiley.CrossRefGoogle Scholar
  90. Mendoza Cuevas, A., Bernardini, F., Gianoncelli, A., & Tuniza, C. (2015). Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrometry, 44, 105–115.CrossRefGoogle Scholar
  91. Menzel, R. E., Takatsu, M., Murdock, R. H., Bouldin, K., & Cheng, K. H. (2000). Photoluminescent CdS/Dendrimer nanocomposites for fingerprint detection. Journal of Forensic Sciences, 45(4), 770–773.CrossRefGoogle Scholar
  92. Mnookin, J. L., Cole, S. A., Dror, I. E., Fisher, B. A. J., Houck, M. M., Inman, K., et al. (2011). The need for a research culture in the forensic sciences. UCLA Law Review, 58(3), 725–780.Google Scholar
  93. Morelato, M. (2015). Forensic drug profiling: A tool for intelligence-led policing. University of Technology Sydney, PhD Thesis.Google Scholar
  94. Morelato, M., Baechler, S., Ribaux, O., Beavis, A., Tahtouh, M., Kirkbride, P., et al. (2014a). Forensic intelligence framework—Part I: Induction of a transversal model by comparing illicit drugs and false identity documents monitoring. Forensic Science International, 236, 181–190.CrossRefGoogle Scholar
  95. Morelato, M., Beavis, A., Tahtouh, M., Ribaux, O., Kirkbride, P., & Roux, C. (2014b). The use of organic and inorganic impurities found in MDMA police seizures in a drug intelligence perspective. Science & Justice, 54(1), 32–41.CrossRefGoogle Scholar
  96. Moret, S., Bécue, A., & Champod, C. (2013). Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic Science International, 224(1–3), 101–110.CrossRefGoogle Scholar
  97. Moret, S., Spindler, X., Lennard, C., & Roux, C. (2015). Microscopic examination of fingermark residues: Opportunities for fundamental studies. Forensic Science International, 255, 28–37.CrossRefGoogle Scholar
  98. Mucchielli, L. (2006). L’élucidation des homicides: De l’enchantement technologique à l’analyse du travail des enquêteurs de police judiciaire. Déviance et Société, 30(1), 91–119.CrossRefGoogle Scholar
  99. Nelson, R. K., Kile, B. M., Plata, D. L., Sylva, S. P., Xu, L., Reddy, C. M., et al. (2006). Tracking the weathering of an oil spill with comprehensive two-dimensional gas chromatography. Environmental Forensics, 7(1), 33–44.CrossRefGoogle Scholar
  100. Nizio, K. D., McGinitie, T. M., & Harynuk, J. J. (2012). Comprehensive multidimensional separations for the analysis of petroleum. Journal of Chromatography A, 1255, 12–23.CrossRefGoogle Scholar
  101. Overton, E. B., Dharmasena, H. P., Ehrmann, U., & Carney, K. R. (1996). Trends and advances in portable analytical instrumentation. Field Analytical Chemistry and Technology, 1(2), 87–92.CrossRefGoogle Scholar
  102. Park, J. L., Kwon, O. H., Kim, J. H., Yoo, H. S., Lee, H. C., Woo, K. M., et al. (2014). Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Science International: Genetics Supplement Series, 13, 147–153.CrossRefGoogle Scholar
  103. Parr, M. K., & Schanzer, W. (2010). Detection of the misuse of steroids in doping control. The Journal of Steroid Biochemistry and Molecular Biology, 121, 528–537.CrossRefGoogle Scholar
  104. Paul, B. D. (2004). Six spectroscopic methods for detection of oxidants in urine: Implication in differentiation of normal and adulterated urine. Journal of Analytical Toxicology, 28, 599–608.CrossRefGoogle Scholar
  105. Perrault, K. A., Nizio, K. D., & Forbes, S. L. (2015a). A Comparison of one-dimensional and comprehensive two-dimensional gas chromatography for decomposition odour profiling using inter-year replicate field trials. Chromatographia, 78(15–16), 1057–1070.CrossRefGoogle Scholar
  106. Perrault, K. A., Rai, T., Stuart, B. H., & Forbes, S. L. (2015b). Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography—Time of flight mass spectrometry. Analytical Methods, 7(2), 690–698.CrossRefGoogle Scholar
  107. Perrault, K. A., Stefanuto, P. H., Stuart, B. H., Rai, T., Focant, J. F., & Forbes, S. L. (2015c). Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. Journal of Separation Science, 38(1), 73–80.CrossRefGoogle Scholar
  108. Pesenti, A., Taudte, R., McCord, B., Doble, P., Roux, C., & Blanes, L. (2014). Coupling µPAD’s and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives. Analytical Chemistry, 86(10), 4707–4714.CrossRefGoogle Scholar
  109. Phillips, C., Gelabert-Besada, M., Fernandez-Formoso, L., Garcia-Magarinos, M., Santos, C., Fondevila, M., et al. (2014). “New turns from old STaRs”: Enhancing the capabilities of forensic short tandem repeat analysis. Electrophoresis, 35(21–22), 3173–3187.CrossRefGoogle Scholar
  110. Prete, C., Galmiche, L., Quenum-Possy-Berry, F.-G., Allain, C., Thiburce, N., & Colard, T. (2013). Lumicyano™: A new fluorescent cyanoacrylate for a one-step luminescent latent fingermark development. Forensic Science International, 233, 104–112.CrossRefGoogle Scholar
  111. Ramotowski, R. S. (2001). Composition of a latent print residue. In H. C. Lee & R. E. Gaensslen (Eds.), Advances in fingerprint technology (2nd ed., pp. 63–104). Boca Raton, FL: CRC Press.Google Scholar
  112. Raymond, J. J., Roux, C., Du Pasquier, E., Sutton, J., & Lennard, C. (2004). The effect of common fingerprint detection techniques on the DNA typing of fingerprints deposited on different surfaces. Journal of Forensic Identification, 54(1), 22–44.Google Scholar
  113. Ribaux, O. (2014). Police scientifique, le renseignement par la trace. Lausanne: Presses polytechniques et universitaires romandes.Google Scholar
  114. Ribaux, O., Baylon, A., Lock, E., Delémont, O., Roux, C., Zingg, C., et al. (2010a). Intelligence-led crime scene processing. Part II: Intelligence and crime scene examination. Forensic Science International, 199(1–3), 63–71.CrossRefGoogle Scholar
  115. Ribaux, O., Baylon, A., Roux, C., Delémont, O., Lock, E., Zingg, C., et al. (2010b). Intelligence-led crime scene processing. Part I: Forensic intelligence. Forensic Science International, 195(1–3), 10–16.CrossRefGoogle Scholar
  116. Ribaux, O., Crispino, F., Delémont, O., & Roux, C. (2015). The progressive opening of forensic science toward criminological concerns. Security Journal. doi: 10.1057/sj.2015.29.
  117. Robertson, J. (2012). Forensic science, an enabler or dis-enabler for criminal investigation? Australian Journal of Forensic Sciences, 44(1), 83–91.CrossRefGoogle Scholar
  118. Roux, C., Crispino, F., & Ribaux, O. (2012). From forensics to forensic science. Current Issues in Criminal Justice, 24(1), 7–24.Google Scholar
  119. Roux, C., Julian, R., Kelty, S. F., & Ribaux, O. (2014). Forensic science effectiveness. In G. B. Field & D. W. Goldsmith (Eds.), Encyclopedia of criminology and criminal justice (pp. 1795–1804). Berlin: Springer.CrossRefGoogle Scholar
  120. Roux, C., Talbot-Wright, B., Robertson, J., Crispino, F., & Ribaux, O. (2015). The end of the (forensic science) world as we know it? The example of trace evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1674), 20140260.CrossRefGoogle Scholar
  121. Ruffella, A., & Wiltshire, P. (2004). Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Science International, 145, 13–23.CrossRefGoogle Scholar
  122. Sametband, M., Shweky, I., Banin, U., Mandler, D., & Almog, J. (2007). Application of nanoparticles for the enhancement of latent fingerprints. Chemical Communications, 11, 1142–1144.CrossRefGoogle Scholar
  123. Sandercock, P. M., & Du Pasquier, E. (2004). Chemical fingerprinting of gasoline. 2. Comparison of unevaporated and evaporated automotive gasoline samples. Forensic Science International, 140(1), 43–59.CrossRefGoogle Scholar
  124. Schoenly, K. G., Haskell, N. H., Mills, D. K., Bieme-ndi, C., Larsen, K., & Lee, Y. (2006). Recreating death’s acre in the school yard: Using pig carcasses as model corpses. The American Biology Teacher, 68, 402–410.CrossRefGoogle Scholar
  125. Scruton, B., Robins, B. W., & Blott, B. H. (1975). The deposition of fingerprint films. Journal of Physics D Applied Physics, 8, 714–723.CrossRefGoogle Scholar
  126. Sharma, S., Plistil, A., Barnett, H. E., Tolley, H. D., Farnsworth, P. B., Stearns, S. D., et al. (2015). Hand-portable gradient capillary liquid chromatography pumping system. Analytical Chemistry, 87(20), 10457–10461.CrossRefGoogle Scholar
  127. Sijen, T. (2014). Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Science International: Genetics Supplement Series, 18, 21–32.CrossRefGoogle Scholar
  128. Sinkov, N. A., Johnston, B. M., Sandercock, P. M., & Harynuk, J. J. (2011). Automated optimization and construction of chemometric models based on highly variable raw chromatographic data. Analytica Chimica Acta, 697(1–2), 8–15.CrossRefGoogle Scholar
  129. Sinkov, N. A., Sandercock, P. M., & Harynuk, J. J. (2014). Chemometric classification of casework arson samples based on gasoline content. Forensic Science International, 235, 24–31.CrossRefGoogle Scholar
  130. Spindler, X., Hofstetter, O., McDonagh, A. M., Roux, C., & Lennard, C. (2011). Enhancement of latent fingermarks on non-porous surfaces using anti-l-amino acid antibodies conjugated to gold nanoparticles. Chemical Communications, 47, 5602–5604.CrossRefGoogle Scholar
  131. Stadler, S., Stefanuto, P. H., Brokl, M., Forbes, S. L., & Focant, J. F. (2013). Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Analytical Chemistry, 85(2), 998–1005.CrossRefGoogle Scholar
  132. Stadler, S., Stefanuto, P. H., Byer, J. D., Brokl, M., Forbes, S., & Focant, J. F. (2012). Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. Journal of Chromatography A, 1255, 202–206.CrossRefGoogle Scholar
  133. Stefanuto, P. H., Perrault, K. A., Lloyd, R. M., Stuart, B., Rai, T., Forbes, S. L., et al. (2015a). Exploring new dimensions in cadaveric decomposition odour analysis. Analytical Methods, 7(6), 2287–2294.CrossRefGoogle Scholar
  134. Stefanuto, P. H., Perrault, K., Stadler, S., Pesesse, R., Brokl, M., Forbes, S., et al. (2014). Reading cadaveric decomposition chemistry with a new pair of glasses. Chempluschem, 79(6), 786–789.CrossRefGoogle Scholar
  135. Stefanuto, P. H., Perrault, K. A., Stadler, S., Pesesse, R., LeBlanc, H. N., Forbes, S. L., et al. (2015b). GC×GC–TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures. Analytical and Bioanalytical Chemistry, 407(16), 4767–4778.CrossRefGoogle Scholar
  136. Stoilovic, M., & Lennard, C. (2012). Fingermark detection and enhancement (6th ed.). Canberra, Australia: National Centre for Forensic Studies.Google Scholar
  137. Taudte, R. V., Beavis, A. B., Wilson-Wilde, L., Roux, C. P., Doble, P. A., & Blanes, L. (2013). A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed uPAD’s. Lab on a Chip, 13(21), 4164–4172.CrossRefGoogle Scholar
  138. Thevis, M. (2010). Mass spectrometry and the list of prohibited substances and methods of doping. In M. D. Desiderio & M. M. N. Nibbering (Eds.), Mass spectrometry in sports drug testing (pp. 44–69). New Jersey: Wiley.CrossRefGoogle Scholar
  139. Thevis, M., Geyer, H., Mareck, U., Sigmund, G., Henke, J., Henke, L., et al. (2007). Detection of manipulation in doping control urine sample collection: a multidisciplinary approach to determine identical urine samples. Analytical and Bioanalytical Chemistry, 388(7), 1539–1543.CrossRefGoogle Scholar
  140. Thevis, M., Geyer, H., Sigmund, G., & Schanzer, W. (2012). Sports drug testing: Analytical aspects of selected cases of suspected, purported, and proven urine manipulation. Journal of Pharmaceutical and Biomedical Analysis, 57, 26–32.CrossRefGoogle Scholar
  141. Thevis, M., Kohler, M., & Schanzer, W. (2008). New drugs and methods of doping and manipulation. Drug Discovery Today, 13, 59–66.CrossRefGoogle Scholar
  142. Thomas, G. L. (1978). The physics of fingerprints and their detection. Journal of Physics E: Scientific Instruments, 11, 722–731.CrossRefGoogle Scholar
  143. Tipple, C. A., Caldwell, P. T., Kile, B. M., Beussman, D. J., Rushing, B., Mitchell, N. J., et al. (2014). Comprehensive characterization of commercially available canine training aids. Forensic Science International, 242, 242–254.CrossRefGoogle Scholar
  144. Turner, D. A., & Goodpaster, J. V. (2009). The effects of microbial degradation on ignitable liquids. Analytical and Bioanalytical Chemistry, 394(1), 363–371.CrossRefGoogle Scholar
  145. Turner, D. A., Pichtel, J., Rodenas, Y., McKillip, J., & Goodpaster, J. V. (2015). Microbial degradation of gasoline in soil: Effect of season of sampling. Forensic Science International, 251, 69–76.CrossRefGoogle Scholar
  146. van Dam, A., Aalders, M. C. G., de Puit, M., Gorré, S. M., Irmak, D., van Leeuwen, T. G., et al. (2014a). Immunolabeling and the compatibility with a variety of fingermark development techniques. Science & Justice, 54(5), 356–362.CrossRefGoogle Scholar
  147. van Dam, A., Aalders, M. C. G., van de Braak, K., Hardy, H. J., van Leeuwen, T. G., & Lambrechts, S. A. G. (2013). Simultaneous labeling of multiple components in a single fingermark. Forensic Science International, 232, 173–179.CrossRefGoogle Scholar
  148. van Dam, A., Schwarz, J. C. V., de Vos, J., Siebes, M., Sijen, T., van Leeuwen, T. G., et al. (2014b). Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks. Angewandte Chemie International Edition, 53(24), 6272–6275.CrossRefGoogle Scholar
  149. Vandenabeele, P., Edwards, H. G. M., & Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: Archaeometry, geosciences, and forensics. Chemical Society Reviews, 43, 2628–2649.CrossRefGoogle Scholar
  150. von Mühlen, C., Zini, C. A., Caramao, E. B., & Marriott, P. J. (2006). Applications of comprehensive two-dimensional gas chromatography to the characterization of petrochemical and related samples. Journal of Chromatography A, 1105(1–2), 39–50.CrossRefGoogle Scholar
  151. White, J. H., Lester, D., Gentile, M., & Rosenbleeth, J. (2011). The utilization of forensic science and criminal profiling for capturing serial killers. Forensic Science International: Genetics Supplement Series, 209(1–3), 160–165.CrossRefGoogle Scholar
  152. Wood, M., Maynard, P., Spindler, X., Lennard, C., & Roux, C. (2012). Visualization of latent fingermarks using an aptamer-based reagent. Angewandte Chemie International Edition, 51, 12272–12274.CrossRefGoogle Scholar
  153. Woods, B., Lennard, C., Kirkbride, K. P., & Robertson, J. (2014). Soil examination for a forensic trace evidence laboratory—Part 1: Spectroscopic techniques. Forensic Science International, 245, 187–194.CrossRefGoogle Scholar
  154. Yang, Y., Xie, B., & Yan, J. (2014). Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics, 12(5), 190–197.CrossRefGoogle Scholar
  155. Yi, S. H., Jia, Y. S., Mei, K., Yang, R. Z., & Huang, D. X. (2015). Age-related DNA methylation changes for forensic age-prediction. International Journal of Legal Medicine, 129(2), 237–244.CrossRefGoogle Scholar
  156. Zorzetti, B. M., Shaver, J. M., & Harynuk, J. J. (2011). Estimation of the age of a weathered mixture of volatile organic compounds. Analytica Chimica Acta, 694(1–2), 31–37.CrossRefGoogle Scholar
  157. Zubakov, D., Boersma, A. W., Choi, Y., van Kuijk, P. F., Wiemer, E. A., & Kayser, M. (2010a). MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. International Journal of Legal Medicine, 124(3), 217–226.CrossRefGoogle Scholar
  158. Zubakov, D., Liu, F., van Zelm, M. C., Vermeulen, J., Oostra, B. A., van Duijn, C. M., et al. (2010b). Estimating human age from T-cell DNA rearrangements. Current Biology, 20(22), R970–R971.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marie Morelato
    • 1
  • Mark Barash
    • 1
  • Lucas Blanes
    • 1
  • Scott Chadwick
    • 1
  • Jessirie Dilag
    • 1
  • Unnikrishnan Kuzhiumparambil
    • 1
  • Katie D. Nizio
    • 1
  • Xanthe Spindler
    • 1
  • Sebastien Moret
    • 1
  1. 1.Centre for Forensic ScienceUniversity of Technology SydneyBroadwayAustralia

Personalised recommendations