Foundations of Science

, Volume 22, Issue 4, pp 717–731 | Cite as

Is Leibnizian Calculus Embeddable in First Order Logic?

  • Piotr Błaszczyk
  • Vladimir Kanovei
  • Karin U. Katz
  • Mikhail G. KatzEmail author
  • Taras Kudryk
  • Thomas Mormann
  • David Sherry


To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on procedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal calculus, then modern infinitesimal frameworks are more appropriate to interpreting Leibnizian infinitesimal calculus than modern Weierstrassian ones.


First order logic Infinitesimal calculus Ontology Procedures Leibniz Weierstrass Abraham Robinson 



M. Katz was partially funded by the Israel Science Foundation Grant Number 1517/12.


  1. Alling, N. (1985). Conway’s field of surreal numbers. Transactions of the American Mathematical Society, 287(1), 365–386.Google Scholar
  2. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., et al. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886–904., arxiv: 1306.5973.
  3. Bair, J., Błaszczyk, P., Ely, R., Henry, V.; Kanovei, V., Katz, K., et al. (2016). Interpreting the infinitesimal mathematics of Leibniz and Euler. Journal for general philosophy of science (to appear). doi: 10.1007/s10838-016-9334-z, arxiv:1605.00455
  4. Barreau, H. (1989). Lazare Carnot et la conception leibnizienne de l’infini mathématique. In La mathématique non standard (pp. 43–82). Paris: Fondem. Sci. CNRS.Google Scholar
  5. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., et al. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.CrossRefGoogle Scholar
  6. Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., et al. (2016). Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS (Journal of the Internatonal Society for the History of Philosophy of Science), 6(1), 117–147. doi: 10.1086/685645, arxiv: 1603.07209.CrossRefGoogle Scholar
  7. Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74, 47–73.CrossRefGoogle Scholar
  8. Błaszczyk, P. (2015). A purely algebraic proof of the fundamental theorem of algebra. arxiv: 1504.05609.
  9. Borovik, A., & Katz, M. (2012). Who gave you the Cauchy-Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi: 10.1007/s10699-011-9235-x.CrossRefGoogle Scholar
  10. Bos, H. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.CrossRefGoogle Scholar
  11. Carnot, L. (1797). Réflexions sur la métaphysique du calcul infinitésimal. Paris.Google Scholar
  12. Cassirer, E. (1902). Leibniz’ System in seinen wissenschaftlichen Grundlagen. Gesammelte Werke, Hamburger Ausgabe, ECW 1, Hamburg, Felix Meiner Verlag, 1998.Google Scholar
  13. Child, J. (Ed.) (1920). The early mathematical manuscripts of Leibniz. Translated from the Latin texts published by Carl Immanuel Gerhardt with critical and historical notes by J. M. Child. The Open Court Publishing, Chicago-London. Reprinted by Dover in 2005.Google Scholar
  14. Conway, J. (2001). On numbers and games (2nd ed.). Natick, MA: A K Peters.Google Scholar
  15. Euclid.(1660). Euclide’s Elements; The whole Fifteen Books, compendiously Demonstrated. By Mr. Isaac Barrow Fellow of Trinity College in Cambridge. And Translated out of the Latin. London.Google Scholar
  16. Gerhardt, C. (Ed.). (1846). Historia et Origo calculi differentialis a G. G. Leibnitio conscripta. Hahn: Hannover.Google Scholar
  17. Gerhardt, C. (Ed.). (1850–1863). Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.Google Scholar
  18. Guillaume, M. (2014). Review of “Katz, M., & Sherry, D. Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78 (2013), no. 3, 571–625.” Mathematical Reviews.
  19. Hahn, H. (1907). Über die nichtarchimedischen Grössensysteme. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch—Naturwissenschaftliche Klasse 116 (Abteilung IIa), pp. 601–655.Google Scholar
  20. Hewitt, E. (1948). Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society, 64, 45–99.CrossRefGoogle Scholar
  21. Ishiguro, H. (1990). Leibniz’s philosophy of logic and language (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  22. Kanovei, V., Katz, M., & Mormann, T. (2013). Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics. Foundations of Science, 18(2), 259–296. doi: 10.1007/s10699-012-9316-5, arxiv: 1211.0244.
  23. Kanovei, V., Katz, K., Katz, M., & Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51. doi: 10.1007/s00283-015-9565-6, arxiv: 1506.02586.
  24. Katz, K., & Katz, M. (2011). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. doi: 10.1162/POSC_a_00047, arxiv: 1108.4201.
  25. Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi: 10.1007/s10699-011-9223-1, arxiv: 104.0375.
  26. Katz, M., & Kutateladze, S. (2015). Edward Nelson (1932–2014). The Review of Symbolic Logic, 8(3), 607–610. doi: 10.1017/S1755020315000015, arxiv: 1506.01570.
  27. Katz, M., & Sherry, D. (2012). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), 1550–1558., arxiv: 1211.7188.
  28. Katz, M., & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625. doi: 10.1007/s10670-012-9370-y, arxiv: 1205.0174.
  29. Knobloch, E. (2002). Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Foundations of the formal sciences 1 (Berlin, 1999). Synthese, 133(1–2), 59–73.CrossRefGoogle Scholar
  30. Laugwitz, D. (1992). Leibniz’ principle and omega calculus. [A] Le labyrinthe du continu. Colloq. Cerisy-la-Salle/Fr. 1990, 144–154.Google Scholar
  31. Leibniz, G. (1684). Nova methodus pro maximis et minimis\(\ldots \) Acta Eruditorum, Oct. 1684. See (Gerhardt 1850–1863), V, pp. 220–226. English translation at
  32. Leibniz, G. (1701). “Cum Prodiisset\(\ldots \)” mss “Cum prodiisset atque increbuisset Analysis mea infinitesimalis\(\ldots \)”. In (Gerhardt 1846, pp. 39–50).
  33. Leibniz, G. (1702). To Varignon, 2 Feb. 1702. In (Gerhardt 1850–1863], vol. IV, pp. 91–95.Google Scholar
  34. Leibniz, G. (1710) Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali. In [Gerhardt 1850–1863], vol. V, pp. 377–382.Google Scholar
  35. Leibniz, G. (1965). Responsio ad nonnullas difficultates a Dn. Bernardo Niewentiit circa methodum differentialem seu infinitesimalem motas. Acta Eruditorum Lipsiae. In (Gerhardt 1850–1863), vol. V, pp. 320–328. A French translation is in (Leibniz 1989, p. 316–334).Google Scholar
  36. Leibniz, G.(1989). La naissance du calcul différentiel. 26 articles des Acta Eruditorum. Translated from the Latin and with an introduction and notes by Marc Parmentier. With a preface by Michel Serres. Mathesis. Librairie Philosophique J. Vrin, Paris.Google Scholar
  37. Lenzen, W. (1987). Leibniz on how to derive set-theory from elementary arithmetics. In Proceedings of the 8th International Congress of Logic, Methodology, and Philosophy of Science, (vol. 3, pp. 176–179) Moscow.Google Scholar
  38. Lenzen, W. (2004). Leibniz’s logic. In The rise of modern logic: From Leibniz to Frege, Handbook of the History of Logic (vol. 3, pp. 1–83), Amsterdam: Elsevier/North-Holland.Google Scholar
  39. Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland.Google Scholar
  40. Mormann, T., & Katz, M. (2013). Infinitesimals as an issue of neo-Kantian philosophy of science. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 3(2), 236–280., arxiv: 1304.1027.
  41. Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 1165–1198.CrossRefGoogle Scholar
  42. Nowik, T., & Katz, M. (2015). Differential geometry via infinitesimal displacements. Journal of Logic and Analysis, 7(5), 1–44.
  43. Quine, W. (1968). Ontological relativity. The Journal of Philosophy, 65(7), 185–212.CrossRefGoogle Scholar
  44. Robinson, A. (1961). Non-standard analysis. Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 432–440. Reprinted in Selected Works, see item Robinson (1979), pp. 3–11.Google Scholar
  45. Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland Publishing Co.Google Scholar
  46. Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. In W. A. J. Luxemburg & S. Körner. New Haven, CT: Yale University Press.Google Scholar
  47. Sherry, D., & Katz, M. (2014). Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana, 44(2) (2012), 166–192. (The article was published in 2014 even though the journal issue lists the year 2012.) arxiv: 1304.2137.
  48. Skolem, T. (1933). Über die Unmöglichkeit einer vollständigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems. Norsk Mat. Forenings Skr., II. Ser. No. 1/12, 73–82.Google Scholar
  49. Skolem, T. (1934). Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae, 23, 150–161.CrossRefGoogle Scholar
  50. Skolem, T. (1955). Peano’s axioms and models of arithmetic. In Mathematical interpretation of formal systems (pp. 1–14). Amsterdam: North-Holland Publishing.Google Scholar
  51. Stolz, O. (1883). Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes. Mathematische Annalen, 22(4), 504–519.CrossRefGoogle Scholar
  52. Unguru, S. (1976). Fermat revivified, explained, and regained. Francia, 4, 774–789.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Piotr Błaszczyk
    • 1
  • Vladimir Kanovei
    • 2
    • 3
  • Karin U. Katz
    • 4
  • Mikhail G. Katz
    • 4
    Email author
  • Taras Kudryk
    • 5
  • Thomas Mormann
    • 6
  • David Sherry
    • 7
  1. 1.Institute of MathematicsPedagogical University of CracowCracowPoland
  2. 2.IPPIMoscowRussia
  3. 3.MIITMoscowRussia
  4. 4.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  5. 5.Department of MathematicsLviv National UniversityLvivUkraine
  6. 6.Department of Logic and Philosophy of ScienceUniversity of the Basque Country UPV/EHUDonostia San SebastianSpain
  7. 7.Department of PhilosophyNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations