Foundations of Science

, Volume 22, Issue 3, pp 627–653 | Cite as

Theoretical and Conceptual Analysis of the Celebrated 4π-Symmetry Neutron Interferometry Experiments

Article

Abstract

In 1975, two experimental groups have independently observed the \(4\pi \)-symmetry of neutrons’ spin, when passing through a static magnetic field, using a three-blade interferometer made from a single perfect Si-crystal (analogous to the Mach Zehnder interferometer of light optics). In this article, we provide a complete analysis of the experiment, both from a theoretical and conceptual point of view. Firstly, we solve the Schrödinger equation in the weak potential approximation, to obtain the amplitude of the refracted and forward refracted beams, produced by the passage of neutrons through one of the three plates of the LLL interferometer. Secondly, we analyze their passage through a static magnetic field region. This allows us to find explicit expressions for the intensities of the four beams exiting the interferometer, two of which will be interfering and show a typical \(4\pi \)-symmetry, when the strength of the magnetic field is varied. In the last part of the article, we provide a conceptual analysis of the experiment, showing that a neutron’s phase change, when passing through the magnetic field, is due to a longitudinal Stern–Gerlach effect, and not to a Larmor precession. We also emphasize that these experiments do not prove the observability of the sign change of the wave function, when a neutron is \(2\pi \) rotated, but strongly indicate that the latter, like any other elementary “particle,” would be a genuinely non-spatial entity.

Keywords

Neutron interferometry Larmor precession Spin rotation Stern-Gerlach effect Non-locality Non-spatiality 

References

  1. Aerts, D. (1999). The stuff the world is made of: Physics and reality. In Diederik Aerts, Jan Broekaert, & Ernest Mathijs (Eds.), The white book of ‘Einstein meets magritte’ (pp. 129–183). Dordrecht: Kluwer Academic Publishers.Google Scholar
  2. Aerts, D. (2009). Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. Foundations of Science, 14, 361–411.CrossRefGoogle Scholar
  3. Aerts, D. (2010). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.CrossRefGoogle Scholar
  4. Aerts, D. (2014). Quantum theory and human perception of the macro-world. Physics Review Letters, 5, 554. doi:10.3389/fpsyg.2014.00554.Google Scholar
  5. Aerts, D., & Reignier, J. (1991). The spin of a quantum-entity and problems of non-locality. Helvetica Physica Acta, 64, 527.Google Scholar
  6. Aerts, D., & Sassoli de Bianchi, M. (2014). The extended bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics, 351, 975–1025.CrossRefGoogle Scholar
  7. Aerts, D., & Sassoli de Bianchi, M. (2015a). Many-measurements or many-worlds? A dialogue. Foundations of Science, 20, 399–427.CrossRefGoogle Scholar
  8. Aerts, D., & Sassoli de Bianchi, M. (2015b). Do spins have directions? Foundations of Science,. doi:10.1007/s00500-015-1913-0.
  9. Aharonov, Y., & Susskind, L. (1967). Observability of the sign change of spinors under \(2\pi \) rotations. Physical Review, 158, 1237.CrossRefGoogle Scholar
  10. Alefeld, B., Badurek, G., & Rauch, H. (1981). Observation of the neutron magnetic resonance energy shift. Physik B, 41, 231.CrossRefGoogle Scholar
  11. Ashcroft, N. W., & Mermin, N. D. (1976). Solid State Physics. Philadelphia: Holt-Saunders International Editions.Google Scholar
  12. Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: A new violation of bell’s inequalities. Physics Review Letters, 49, 91.CrossRefGoogle Scholar
  13. Barut, A. O., & Bŏzic, M. (1990). On the interpretation of the spinor phase change in a magnetic field in neutron interferometry. Physics Letters A, 149, 431–437.CrossRefGoogle Scholar
  14. Barut, A. O., Bŏzic, M., Marić, Z., & Rauch, H. (1987). Tunneling of neutral spin-1/2 particles through magnetic fields. Physica B, 328, 1–10.Google Scholar
  15. Bernstein, H. J. (1967). Spin precession during interferometry of fermions and the phase factor associated with rotations through \(2\pi \) radians. Physics Review Letters, 18, 1102.CrossRefGoogle Scholar
  16. Bernstein, H. J., & Zeilinger, A. (1980). Exact spin rotation by precession during neutron interferometry. Physics Letters A, 75, 169–172.CrossRefGoogle Scholar
  17. Bonse, U., & Hart, M. (1965). An X-ray interferometer. Applied Physics Letters, 6, 155.CrossRefGoogle Scholar
  18. Bonse, U., & Rauch, H. (eds.), Neutron interferometry. In Proceedings of an International Workshop held 5–7 June 1978 at the Institute Max von Laue–Paul Langevin, Grenoble (Clarendon Press, Oxford, 1979).Google Scholar
  19. Cronin, A. D., Schmiedmayer, J., & Pritchard, D. E. (2009). Optics and interferometry with atoms and molecules. Reviews of Modern Physics, 81, 1051.CrossRefGoogle Scholar
  20. Eder, G., & Zeilinger, A. (1976). Interference phenomena and spin rotation of neutrons by magnetic materials. Physical Review, 34, 76.Google Scholar
  21. Fermi, E. (1936). Motion of neutrons in hydrogenous substances. Foundations of Physics, 7, 13–52.Google Scholar
  22. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., et al. (2011). Quantum interference of large organic molecules. Reviews of Modern Physics, 2, 263.Google Scholar
  23. Gough, W. (1992). On the phase change of a spinor due to a rotation through \(2\pi \). European Journal of Physics, 13, 167–169.CrossRefGoogle Scholar
  24. Greenberger, D. M. (1983). The neutron interferometer as a device for illustrating the strange behavior of quantum systems. Reviews of Modern Physics, 55, 875.CrossRefGoogle Scholar
  25. Hasegawa, Y., & Rauch, H. (2011). Quantum phenomena explored with neutrons. New Journal of Physics, 13, 115010.CrossRefGoogle Scholar
  26. Hauge, E. H., & Støvneng, J. A. (1989). Tunneling times: A critical review. Reviews of Modern Physics, 61, 917–936.CrossRefGoogle Scholar
  27. Hegerfeldt, G. C., & Kraus, K. (1968). Critical remark on the observability of the sign change of spinors under \(2\pi \) rotations. Physical Review, 170, 1185–1186.CrossRefGoogle Scholar
  28. Kastner, R. E. (2013). The transactional interpretation of quantum mechanics: The reality of possibility. New York: Cambridge University Press.Google Scholar
  29. Ma, X., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., et al. (2012). Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489, 269–273.CrossRefGoogle Scholar
  30. Martin, Ph A. (1981). Time-delay of quantum scattering processes. Acta Physica Austriaca, 23, 157–208.Google Scholar
  31. Martin, Ph A, & Sassoli de Bianchi, M. (1992). On the theory of the Larmor clock and time-delay. European Journal of Physics, 25, 3627–3647.Google Scholar
  32. Martin, Ph A, & Sassoli de Bianchi, M. (1994). Spin precession revisited. Foundations of Physics, 24, 1371–1378.CrossRefGoogle Scholar
  33. Mezei, F. (1986). La nouvelle vague in polarized neutron scattering. Physica B, 137, 295–308.CrossRefGoogle Scholar
  34. Mezei, F. (1988). Zeeman energy, interference and neutron spin echo: A minimal theory. Physica B, 151, 74.CrossRefGoogle Scholar
  35. Mezei, F. (1979). In U. Bonse & H. Rauch (Eds.), Neutron interferometry. Oxford: Clarendon.Google Scholar
  36. Piron, C. (1990). Mécanique quantique: Bases et applications. Lausanne, Switzerland: Presses polytechniques et universitaires romandes.Google Scholar
  37. Rauch, H. (2012). Neutron matter wave quantum optics. Foundations of Physics, 42, 760–777.CrossRefGoogle Scholar
  38. Rauch, H., Treimer, W., & Bonse, U. (1974). Test of a single crystal neutron interferometer. Physics Letters A, 47, 369–371.CrossRefGoogle Scholar
  39. Rauch, H., & Werner, S. A. (2015). Neutron interferometry: Lessons in experimental quantum mechanics (2nd ed.). Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., & Bonse, U. (1975). Verification of coherent spinor rotation of fermions. Physics Letters A, 54A, 425.CrossRefGoogle Scholar
  41. Sassoli de Bianchi, M. (2011). Ephemeral properties and the illusion of microscopic particles. Foundations of Science, 16, 393–409.CrossRefGoogle Scholar
  42. Sassoli de Bianchi, M. (2012). From permanence to total availability: A quantum conceptual upgrade. Foundations of Science, 17, 223–244.CrossRefGoogle Scholar
  43. Sassoli de Bianchi, M. (2013). The delta-quantum machine, the k-model, and the non-ordinary spatiality of quantum entities. Foundations of Science, 18, 11–41.CrossRefGoogle Scholar
  44. Time-delay of classical and quantum scattering processes: a conceptual overview and a general definition, Cent. Eur. J. of Phys. 10, 282–319 (2012).Google Scholar
  45. Weinfurter, H., Badurek, G., Rauch, H., & Schwahn, D. (1988). Inelastic action of a gradient radio-frequency neutron spin flipper. Physics B, 72, 195.Google Scholar
  46. Werner, S. A., Colella, R., Overhauser, A. W., & Eagen, C. F. (1975). Observation of the phase shift of a neutron due to precession in a magnetic field. Physics Letters A, 35, 1053.CrossRefGoogle Scholar
  47. Zeilinger, A., & Shull, C. G. (1979). Magnetic field effects on dynamical diffraction of neutrons by perfect crystals. International Journal of Theoretical Physics, 19, 3957.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratorio di Autoricerca di BaseLuganoSwitzerland

Personalised recommendations