Theoretical and Conceptual Analysis of the Celebrated 4π-Symmetry Neutron Interferometry Experiments

Abstract

In 1975, two experimental groups have independently observed the \(4\pi \)-symmetry of neutrons’ spin, when passing through a static magnetic field, using a three-blade interferometer made from a single perfect Si-crystal (analogous to the Mach Zehnder interferometer of light optics). In this article, we provide a complete analysis of the experiment, both from a theoretical and conceptual point of view. Firstly, we solve the Schrödinger equation in the weak potential approximation, to obtain the amplitude of the refracted and forward refracted beams, produced by the passage of neutrons through one of the three plates of the LLL interferometer. Secondly, we analyze their passage through a static magnetic field region. This allows us to find explicit expressions for the intensities of the four beams exiting the interferometer, two of which will be interfering and show a typical \(4\pi \)-symmetry, when the strength of the magnetic field is varied. In the last part of the article, we provide a conceptual analysis of the experiment, showing that a neutron’s phase change, when passing through the magnetic field, is due to a longitudinal Stern–Gerlach effect, and not to a Larmor precession. We also emphasize that these experiments do not prove the observability of the sign change of the wave function, when a neutron is \(2\pi \) rotated, but strongly indicate that the latter, like any other elementary “particle,” would be a genuinely non-spatial entity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aerts, D. (1999). The stuff the world is made of: Physics and reality. In Diederik Aerts, Jan Broekaert, & Ernest Mathijs (Eds.), The white book of ‘Einstein meets magritte’ (pp. 129–183). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  2. Aerts, D. (2009). Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. Foundations of Science, 14, 361–411.

    Article  Google Scholar 

  3. Aerts, D. (2010). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.

    Article  Google Scholar 

  4. Aerts, D. (2014). Quantum theory and human perception of the macro-world. Physics Review Letters, 5, 554. doi:10.3389/fpsyg.2014.00554.

    Google Scholar 

  5. Aerts, D., & Reignier, J. (1991). The spin of a quantum-entity and problems of non-locality. Helvetica Physica Acta, 64, 527.

    Google Scholar 

  6. Aerts, D., & Sassoli de Bianchi, M. (2014). The extended bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics, 351, 975–1025.

    Article  Google Scholar 

  7. Aerts, D., & Sassoli de Bianchi, M. (2015a). Many-measurements or many-worlds? A dialogue. Foundations of Science, 20, 399–427.

    Article  Google Scholar 

  8. Aerts, D., & Sassoli de Bianchi, M. (2015b). Do spins have directions? Foundations of Science,. doi:10.1007/s00500-015-1913-0.

  9. Aharonov, Y., & Susskind, L. (1967). Observability of the sign change of spinors under \(2\pi \) rotations. Physical Review, 158, 1237.

    Article  Google Scholar 

  10. Alefeld, B., Badurek, G., & Rauch, H. (1981). Observation of the neutron magnetic resonance energy shift. Physik B, 41, 231.

    Article  Google Scholar 

  11. Ashcroft, N. W., & Mermin, N. D. (1976). Solid State Physics. Philadelphia: Holt-Saunders International Editions.

    Google Scholar 

  12. Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: A new violation of bell’s inequalities. Physics Review Letters, 49, 91.

    Article  Google Scholar 

  13. Barut, A. O., & Bŏzic, M. (1990). On the interpretation of the spinor phase change in a magnetic field in neutron interferometry. Physics Letters A, 149, 431–437.

    Article  Google Scholar 

  14. Barut, A. O., Bŏzic, M., Marić, Z., & Rauch, H. (1987). Tunneling of neutral spin-1/2 particles through magnetic fields. Physica B, 328, 1–10.

    Google Scholar 

  15. Bernstein, H. J. (1967). Spin precession during interferometry of fermions and the phase factor associated with rotations through \(2\pi \) radians. Physics Review Letters, 18, 1102.

    Article  Google Scholar 

  16. Bernstein, H. J., & Zeilinger, A. (1980). Exact spin rotation by precession during neutron interferometry. Physics Letters A, 75, 169–172.

    Article  Google Scholar 

  17. Bonse, U., & Hart, M. (1965). An X-ray interferometer. Applied Physics Letters, 6, 155.

    Article  Google Scholar 

  18. Bonse, U., & Rauch, H. (eds.), Neutron interferometry. In Proceedings of an International Workshop held 5–7 June 1978 at the Institute Max von Laue–Paul Langevin, Grenoble (Clarendon Press, Oxford, 1979).

  19. Cronin, A. D., Schmiedmayer, J., & Pritchard, D. E. (2009). Optics and interferometry with atoms and molecules. Reviews of Modern Physics, 81, 1051.

    Article  Google Scholar 

  20. Eder, G., & Zeilinger, A. (1976). Interference phenomena and spin rotation of neutrons by magnetic materials. Physical Review, 34, 76.

    Google Scholar 

  21. Fermi, E. (1936). Motion of neutrons in hydrogenous substances. Foundations of Physics, 7, 13–52.

    Google Scholar 

  22. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., et al. (2011). Quantum interference of large organic molecules. Reviews of Modern Physics, 2, 263.

    Google Scholar 

  23. Gough, W. (1992). On the phase change of a spinor due to a rotation through \(2\pi \). European Journal of Physics, 13, 167–169.

    Article  Google Scholar 

  24. Greenberger, D. M. (1983). The neutron interferometer as a device for illustrating the strange behavior of quantum systems. Reviews of Modern Physics, 55, 875.

    Article  Google Scholar 

  25. Hasegawa, Y., & Rauch, H. (2011). Quantum phenomena explored with neutrons. New Journal of Physics, 13, 115010.

    Article  Google Scholar 

  26. Hauge, E. H., & Støvneng, J. A. (1989). Tunneling times: A critical review. Reviews of Modern Physics, 61, 917–936.

    Article  Google Scholar 

  27. Hegerfeldt, G. C., & Kraus, K. (1968). Critical remark on the observability of the sign change of spinors under \(2\pi \) rotations. Physical Review, 170, 1185–1186.

    Article  Google Scholar 

  28. Kastner, R. E. (2013). The transactional interpretation of quantum mechanics: The reality of possibility. New York: Cambridge University Press.

    Google Scholar 

  29. Ma, X., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., et al. (2012). Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489, 269–273.

    Article  Google Scholar 

  30. Martin, Ph A. (1981). Time-delay of quantum scattering processes. Acta Physica Austriaca, 23, 157–208.

    Google Scholar 

  31. Martin, Ph A, & Sassoli de Bianchi, M. (1992). On the theory of the Larmor clock and time-delay. European Journal of Physics, 25, 3627–3647.

    Google Scholar 

  32. Martin, Ph A, & Sassoli de Bianchi, M. (1994). Spin precession revisited. Foundations of Physics, 24, 1371–1378.

    Article  Google Scholar 

  33. Mezei, F. (1986). La nouvelle vague in polarized neutron scattering. Physica B, 137, 295–308.

    Article  Google Scholar 

  34. Mezei, F. (1988). Zeeman energy, interference and neutron spin echo: A minimal theory. Physica B, 151, 74.

    Article  Google Scholar 

  35. Mezei, F. (1979). In U. Bonse & H. Rauch (Eds.), Neutron interferometry. Oxford: Clarendon.

  36. Piron, C. (1990). Mécanique quantique: Bases et applications. Lausanne, Switzerland: Presses polytechniques et universitaires romandes.

    Google Scholar 

  37. Rauch, H. (2012). Neutron matter wave quantum optics. Foundations of Physics, 42, 760–777.

    Article  Google Scholar 

  38. Rauch, H., Treimer, W., & Bonse, U. (1974). Test of a single crystal neutron interferometer. Physics Letters A, 47, 369–371.

    Article  Google Scholar 

  39. Rauch, H., & Werner, S. A. (2015). Neutron interferometry: Lessons in experimental quantum mechanics (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  40. Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., & Bonse, U. (1975). Verification of coherent spinor rotation of fermions. Physics Letters A, 54A, 425.

    Article  Google Scholar 

  41. Sassoli de Bianchi, M. (2011). Ephemeral properties and the illusion of microscopic particles. Foundations of Science, 16, 393–409.

    Article  Google Scholar 

  42. Sassoli de Bianchi, M. (2012). From permanence to total availability: A quantum conceptual upgrade. Foundations of Science, 17, 223–244.

    Article  Google Scholar 

  43. Sassoli de Bianchi, M. (2013). The delta-quantum machine, the k-model, and the non-ordinary spatiality of quantum entities. Foundations of Science, 18, 11–41.

    Article  Google Scholar 

  44. Time-delay of classical and quantum scattering processes: a conceptual overview and a general definition, Cent. Eur. J. of Phys. 10, 282–319 (2012).

  45. Weinfurter, H., Badurek, G., Rauch, H., & Schwahn, D. (1988). Inelastic action of a gradient radio-frequency neutron spin flipper. Physics B, 72, 195.

    Google Scholar 

  46. Werner, S. A., Colella, R., Overhauser, A. W., & Eagen, C. F. (1975). Observation of the phase shift of a neutron due to precession in a magnetic field. Physics Letters A, 35, 1053.

    Article  Google Scholar 

  47. Zeilinger, A., & Shull, C. G. (1979). Magnetic field effects on dynamical diffraction of neutrons by perfect crystals. International Journal of Theoretical Physics, 19, 3957.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Gérard Wanders, professor emeritus of the University of Lausanne, for having suggested me, when I was a student, to explore the physics of neutron interferometry experiments. Many of the calculations presented in the first part of this article, describing the passage of a neutron through a LLL crystal, are drawn from some of his handwritten notes. No need to say, possible errors are solely my responsibility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Sassoli de Bianchi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sassoli de Bianchi, M. Theoretical and Conceptual Analysis of the Celebrated 4π-Symmetry Neutron Interferometry Experiments. Found Sci 22, 627–653 (2017). https://doi.org/10.1007/s10699-016-9491-x

Download citation

Keywords

  • Neutron interferometry
  • Larmor precession
  • Spin rotation
  • Stern-Gerlach effect
  • Non-locality
  • Non-spatiality