Arithmetization and Rigor as Beliefs in the Development of Mathematics

Abstract

With the arrival of the nineteenth century, a process of change guided the treatment of three basic elements in the development of mathematics: rigour, the arithmetization and the clarification of the concept of function, categorised as the most important tool in the development of the mathematical analysis. In this paper we will show how several prominent mathematicians contributed greatly to the development of these basic elements that allowed the solid underpinning of mathematics and the consideration of mathematics as an axiomatic way of thinking in which anyone can deduce valid conclusions from certain types of premises. This nineteenth century stage shares, possibly with the Heroic Age of Ancient Greece, the most revolutionary period in all history of mathematics.

This is a preview of subscription content, access via your institution.

References

  1. Abel, N. H. (1826). Recherches sur la série \(1+\frac{m}{1}x+\frac{m(m-1)}{1\cdot 2}x^{2}+\frac{m(m-1)(m-2)}{1\cdot 2\cdot 3}x^{3}+\ldots \). Oeuvres, 1, 219–250.

    Google Scholar 

  2. Berkeley, G. (1734). The analyst. London: J. Tonson.

  3. Bolzano, B. (1817). Rein analytischer beweis des Lehrsatzes, dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Prague: Haase.

    Google Scholar 

  4. Bombal, F. (2010). Rigor y demostración en matemáticas. Rev. R. Acad. Cienc. Exact. Fís. Nat., 104(1), 61–79.

    Google Scholar 

  5. Boyer, C. B. (1986). Historia de la matemática. Madrid: Alianza Editorial.

    Google Scholar 

  6. Cauchy, A. L. (1821). Cours d’analyse de l’École royale polytechnique. Paris: Imprimerie royale.

    Google Scholar 

  7. Davis, P. J., & Hersh, R. (1982). Experiencia matemática. Barcelona: MEC y Labor.

    Google Scholar 

  8. Dedekind, R. (1872). Continuity and irrational numbers. From Kant to Hilbert, a source book in the foundations of mathematics (Vol. II, pp. 765–779) (English Trans.). Oxford: Oxford University Press (1996).

  9. Euler, L. (1748). Introductio in analysin infinitorum. Lausanne: M.M. Bousquet.

  10. Ferreirós, J. (2003). Historia. La gaceta de la RSME, 6(2), 413–436.

    Google Scholar 

  11. Gauss, C. F. (1963). Disquisitiones arithmeticae (English Trans.). New Haven, CT: Yale University Press (1966).

  12. Hankel, H. (1867). Vorlesungen über die complexen zahlen und ihre functionen. Leipzig: Leopold Voss.

    Google Scholar 

  13. Heine, E. (1872). Die Elemente der Functionenlehre. J. Reine Angew. Math., 74, 172–188.

    Article  Google Scholar 

  14. Lacroix, S. F. (1797). Traité du calcul différentiel et du calcul intégral. París: J.B.M. Duprat.

  15. Lagrange, J. L. (1797). Œuvres complètes, tome 9. Théorie des fonctions analytiques contenant les principes du calcul différentiel dégagés de toute considération d’infiniment petits, d’évanouissans, de limites et de fluxions, et réduits à l’analyse algébrique des quantités finies. Paris: Imprimerie de la République.

  16. Mannheim, J. H. (1964). The genesis of point set topology. Oxford: Pergamon.

    Google Scholar 

  17. Martínez, C. (2008). El concepto de función en la obra de Euler: un recorrido a través de la constitución del Análisis Matemático Moderno. Miscelánea Matemática, 46, 73–91.

    Google Scholar 

  18. Méray, H. C. (1869). Remarques sur la nature des quantités définies par la condition de servir de limites à des variables données. Revue des Sociétés savantes, Sci. Math. Phys. Nat., 2(4), 280–289.

    Google Scholar 

  19. Montesinos, V., & Valdivia, M. (2000). Momentos estelares en el desarrollo de las matemáticas. Madrid: Real Academia de Ciencias Exactas, Físicas y Naturales.

    Google Scholar 

  20. Ortega, I. (1993). La historia que vivieron los matemáticos. Buenos Aires: Ediciones Letrabuena.

    Google Scholar 

  21. Rey Pastor, J., & Babini, J. (1997). Historia de la Matemática. Barcelona: Gedisa.

    Google Scholar 

  22. Struik, D. J. (1986). A source book in mathematics, 1200–1800. Princeton: Princeton University Press.

    Book  Google Scholar 

Download references

Acknowledgments

The authors was partially supported by Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante under Project GRE11-23.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Matías Sepulcre.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Segura, L., Sepulcre, J.M. Arithmetization and Rigor as Beliefs in the Development of Mathematics. Found Sci 21, 207–214 (2016). https://doi.org/10.1007/s10699-015-9414-2

Download citation

Keywords

  • Mathematics
  • Rigour
  • Arithmetization
  • Analysis
  • Function