Skip to main content
Log in

Medieval Representations of Change and Their Early Modern Application

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The article investigates the role of symbolic means of knowledge representation in concept development using the historical example of medieval diagrams of change employed in early modern work on the motion of fall. The parallel cases of Galileo Galilei, Thomas Harriot, and René Descartes and Isaac Beeckman are discussed. It is argued that the similarities concerning the achievements as well as the shortcomings of their respective work on the motion of fall can to a large extent be attributed to their shared use of means of knowledge representation handed down from antiquity and the Middle Ages. While the interpretation of medieval diagrams was unproblematic in the scholastic context from which they arose, in the early modern context, which was characterized by the confluence of natural philosophy and practical mathematics, it became ambiguous. It was the early modern mathematicians’ work within this contradictory framework that brought about a new conceptualization of motion which, in particular, eventually led to an infinitesimal concept of velocity. In this process, the diagrams themselves remained largely unchanged and thus functioned as a catalyst for concept development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeckman, I. (1939). Journal tenu par Isaac Beeckman de 1604 à 1634. The Hague: Martinius Nijhoff.

  2. Bertoloni Meli D. (2006) Thinking with objects: The transformation of mechanics in the seventeenth century. Johns Hopkins University Press, Baltimore

    Google Scholar 

  3. Blay M. (1993) Les raisons de l’infini: Du monde clos à l’univers mathématique. Gallimard, Paris

    Google Scholar 

  4. Blay, M. (1998). Reasoning with the infinite: From the closed world to the mathematical universe. Chicago: University of Chicago Press (English translation of Blay 1993).

  5. Brioist, J.-J., & Brioist, P. (2008). Harriot, lecteur d’Alvarus Thomas et de Tartaglia. In J. Biard & S. Rommevaux (Eds.), Mathématiques et théorie du mouvement (XIVe–XVIe siècles). Villeneuve d’Ascq: Septentrion.

  6. Bruner J. S., Olver R. R., Greenfield P. M. (1967) Studies in cognitive growth: A collaboration at the center for cognitive studies. Wiley, New York

    Google Scholar 

  7. Büttner, J. (2009). Galileo’s challenges: The orgin and early conceptual development of Galileo’s theory of naturally accelerated motion on inclined planes. Ph.D. Thesis, Humboldt-Universität zu Berlin.

  8. Büttner, J., Damerow, P., & Renn, J. (2001). Traces of an invisible giant: Shared knowledge in Galileo’s unpublished treatises. In J. Montesinos & C. Solís (Eds.), Largo campo di filosofare: Eurosymposium Galileo 2001 (pp. 183–201). La Orotava: Fundación Canaria Orotava de Historia de la Ciencia.

  9. Büttner, J., Damerow, P., Renn, J., & Schemmel, M. (2003). The challenging images of artillery: Practical knowledge at the root of the scientific revolution. In W. Lefèvre, J. Renn & U. Schoepflin (Eds.), The power of images in early modern science (pp. 3–27). Basel: Birkhäuser.

  10. Clagett M. (1950) Richard Swineshead and late medieval physics. Osiris 9: 131–61

    Google Scholar 

  11. Clagett M. (1959) The science of mechanics in the middle ages. The University of Wisconsin Press, Madison

    Google Scholar 

  12. Clagett, M. (ed. and transl.). (1968). Nicole Oresme and the Medieval geometry of qualities and motions: A treatise on the uniformity and difformity of intensities known as ‘Tractatus de configurationibus qualitatum et motuum’. Madison: The University of Wisconsin Press.

  13. Cohen I. B. (1956) Galileo’s rejection of the possibility of velocity changing uniformly with respect to distance. Isis 47: 231–235

    Article  Google Scholar 

  14. Damerow, P. (1996). Abstraction and representation: Essays on the cultural evolution of thinking. Dordrecht: Kluwer.

  15. Damerow P., Freudenthal G., McLaughlin P., Renn J. (2004) Exploring the limits of preclassical mechanics. Springer, New York

    Book  Google Scholar 

  16. Descartes, R. (1964–74). Euvres de Descartes. In C. Adam & P. Tannery (Eds.) Paris: Vrin.

  17. Drake S. (1970) Uniform acceleration, space, and time (Galileo Gleanings XIX). The British Journal for the History of Science 5: 21–43

    Article  Google Scholar 

  18. Drake S. (1973) Galileo’s discovery of the laws of free fall. Scientific American 228(5): 84–92

    Article  Google Scholar 

  19. Duhem P. M. M. (1913) Études sur Leonardo da Vinci: Troisième série: Les précurseurs parisiens de Galilée. Paris: Hermann

    Google Scholar 

  20. Galileo G. (1968) Le opere di Galileo Galilei: Nuova ristampa della edizione nazionale, 20 vols. (Antonio Favaro, ed., 1890–1909). Barbèra, Florence

    Google Scholar 

  21. Galluzzi P. (1979) Momento: Studi galileiani. Ateneo e Bizzari, Rome

    Google Scholar 

  22. Heytesbury W. (1494) Tractatus Gulielmi Hentisberi de sensu composito et diuiso; Regule eiusdem cum sophismatibus .... Bonetus Locatellus, Venice

    Google Scholar 

  23. Huygens C. (1986) Christiaan Huygens’ ‘The pendulum clock, or, geometrical demonstrations concerning the motion of pendula as applied to clocks’. Iowa State University Press, Ames

    Google Scholar 

  24. Jullien V., Charrak A. (2002) Ce que dit Descartes touchant la chute des corps: de 1618 à 1646, étude d’un indicateur de la philosophie naturelle cartésienne. Septentrion, Villeneuve d’Ascq

    Google Scholar 

  25. Koyré, A. (1939). \’Etudes Galiléennes. Paris: Hermann (1939).

  26. Koyré, A. (1978). Galileo studies. New Jersey: Humanities Press (1978) [English translation of Koyré (1978)].

  27. Maier, A. (1952) An der Grenze von Scholastik und Naturwissenschaft: Die Struktur der materiellen Substanz, das Problem der Gravitation, die Mathematik der Formlatituden (2nd edn.). Rome: Edizioni di Storia e Letteratura.

  28. Maier, A. (1968). Zwei Grundprobleme der scholastischen Naturphilosophie: I. Das Problem der intensiven Grö ße, II. die Impetustheorie (3rd edn.). Rome: Edizioni di Storia e Letteratura.

  29. Pierce, C. S. (1967). In C. Hartshorne & P. Weiss (Eds.), Collected papers of Charles Sanders Peirce (Vols. 3 and 4). Belknap Press: Cambridge.

  30. Renn, J., Damerow, P., Rieger, S., & Giulini, D. (2001). Hunting the white elephant: When and how did Galileo discover the law of fall? In J. Renn (Ed.), Galileo in context (pp. 29–149). Cambridge: Cambridge University Press.

  31. Rommevaux, S. (ed. and transl.). (2010). Thomas Bradwardine: ‘Traité des rapports entre les rapidités dans les mouvements’ suivi de Nicole Oresme: ‘Sur les rapports de rapports’. Paris: Les Belles Lettres.

  32. Schemmel M. (2006) The English Galileo: Thomas Harriot and the force of shared knowledge in early modern mechanics. Physics in Perspective 8: 360–380

    Article  Google Scholar 

  33. Schemmel M. (2008) The English Galileo: Thomas Harriot’s work on motion as an example of preclassical mechanics. Springer, Dordrecht

    Book  Google Scholar 

  34. Stjernfelt F. (2007) Diagrammatology. Springer, Dordrecht

    Book  Google Scholar 

  35. Sylla E. D. (1973) Medieval Concepts of the latitude of forms: The Oxford calculators. Archives d’histoire doctrinale et Littéraire du moyen Âge 40: 223–283

    Google Scholar 

  36. Sylla, E. D. (1986). Galileo and the Oxford Calculatores: Analytical languages and the mean-speed theorem for accelerated motion. In: W. A. Wallace (Ed.), Reinterpreting Galileo (pp. 53–108). Washington: The Catholic University of America Press.

  37. Valleriani M. (2010) Galileo engineer. Springer, Dordrecht

    Book  Google Scholar 

  38. Wallace W. A. (1968) The enigma of Domingo de Soto: Uniformiter difformis and falling bodies in late medieval physics. Isis 59: 384–401

    Article  Google Scholar 

  39. Weisheipl J. A. (1959) The place of John Dumbleton in the Merton School. Isis 50: 439–454

    Article  Google Scholar 

  40. Wilson C. (1956) William Heytesbury: Medieval logic and the rise of mathematical physics. The University of Wisconsin Press, Madison

    Google Scholar 

  41. Zilsel E. (2000) The social origins of modern science. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schemmel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schemmel, M. Medieval Representations of Change and Their Early Modern Application. Found Sci 19, 11–34 (2014). https://doi.org/10.1007/s10699-012-9312-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-012-9312-9

Keywords

Navigation