The Observer Effect Article First Online: 13 July 2012 DOI :
10.1007/s10699-012-9298-3

Cite this article as: Sassoli de Bianchi, M. Found Sci (2013) 18: 213. doi:10.1007/s10699-012-9298-3 Abstract Founding our analysis on the Geneva-Brussels approach to the foundations of physics, we provide a clarification and classification of the key concept of observation. An entity can be observed with or without a scope. In the second case, the observation is a purely non-invasive discovery process; in the first case, it is a purely invasive process, which can involve either creation or destruction aspects. An entity can also be observed with or without a full control over the observational process. In the latter case, the observation can be described by a symmetry breaking mechanism, through which a specific deterministic observational process is selected among a number of potential ones, as explained in Aerts’ hidden measurement approach . This is what is called a product test, or product observation , whose consequences are that outcomes can only be predicted in probabilistic terms, as it is the case in typical quantum measurements. We also show that observations can be about intrinsic (stable) properties of the observed entity, or about relational (ephemeral) properties between the observer and observed entities; also, they can be about intermediate properties, neither purely classical, nor purely quantum. Our analysis allows us to propose a general conceptual characterization of quantum measurements, as observational processes involving three aspects: (1) product observations, (2) pure creation aspects and (3) ephemeral relational properties. We also discuss the important concept of non-spatiality and emphasize some of the differences and similarities between quantum and classical/relativistic observations.

Keywords Observation Quantum measurement Creation Discovery Intrinsic properties Relational properties

References Aerts D. (1994) Quantum structures, separated physical entities and probability. Foundations of Physics 24: 1227

CrossRef Google Scholar Aerts D. (1996a) Relativity theory: What is reality?. Foundations of Physics 6: 1627–1644

CrossRef Google Scholar Aerts D. (1996b) Towards a framework for possible unification of quantum and relativity theories. International Journal of Theoretical Physics 35: 2399–2416

CrossRef Google Scholar Aerts D., Coecke B., D’Hooghe B., Valckenborgh F. (1997) A mechanistic macroscopic physical entity with a three-dimensional Hilbert space description. Helvetica Physica Acta 70: 793–802

Google Scholar Aerts D. (1982) Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics 12: 1131–1170

CrossRef Google Scholar Aerts D. (1984) The missing element of reality in the description of quantum mechanics of the EPR paradox situation. Helvetica Physica Acta 57: 421–428

Google Scholar Aerts, D. (1990). An attempt to imagine parts of the reality of the micro-world. In J. Mizerski, et al. (Eds.), Problems in quantum physics II; Gdansk ’89 . Singapore: World Scientific Publishing Company. An Italian translation of this article is also available: “Un tentativo di immaginare parti del micromondo,” AutoRicerca (Vol. 2, pp. 77–109) (2011).

Aerts D. (1992a) The construction of reality and its influence on the understanding of quantum structures. International Journal of Theoretical Physics 31: 1815–1837

CrossRef Google Scholar Aerts D. (1992b) A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics 27: 202–210

CrossRef Google Scholar Aerts D. (1998) The entity and modern physics: The creation-discovery view of reality. In: Castellani E. (Ed.), Interpreting bodies: Classical and quantum objects in modern physics. Princeton Unversity Press, Princeton

Google Scholar Aerts, D. (1999a). The stuff the world is made of: Physics and reality. In D. Aerts, J. Broekaert, & E. Mathijs (Eds.), The white book of ‘Einstein meets Magritte (pp. 129–183). Dordrecht: Kluwer Academic Publishers.

Aerts, D. (1999b). Quantum mechanics: Structures, axioms and paradoxes. In D. Aerts, J. Broekaert, & E. Mathijs (Eds.), The indigo book of ‘Einstein meets Magritte (pp. 141–205). Dordrecht: Kluwer Academic Publishers.

Aerts, D. (2002a). Reality and probability: Introducing a new type of probability calculus. In Probing the structure of quantum mechanics: Nonlinearity, nonlocality, computation and axiomatics (pp. 205–229). Singapore: World Scientific.

Aerts, D. (2002b). Being and change: Foundations of a realistic operational formalism. In Probing the Structure of quantum mechanics: Nonlinearity, nonlocality, computation and axiomatics (pp. 71–110). Singapore: World Scientific.

Christiaens, W. (2002). Some notes on Aerts’ interpretation of the EPR-paradox and the violation of Bell-inequalities. In Probing the structure of quantum mechanics: Nonlinearity, nonlocality, computation and axiomatics (pp. 259–286). Singapore: World Scientific.

Coecke B. (1995a) Hidden measurement representation for quantum entities described by finite dimensional complex Hilbert spaces. Foundations of Physics 25: 203

CrossRef Google Scholar Coecke B. (1995b) Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes. Foundations of Physics Letters 8: 437

CrossRef Google Scholar Coecke B. (1996) New examples of hidden measurement systems and outline of a general scheme. Tatra Mountains Mathematical Publications 10: 203

Google Scholar Conway J. H., Kochen S. (2006) The free will theorem. Foundation of Physics 36: 1441–1473

CrossRef Google Scholar Conway J. H., Kochen S. (2009) The strong free will theorem. Notices of the American Mathematical Society 56: 226–232

Google Scholar Einstein A., Podolsky B., Rosen N. (1935) Can quantum-mechanical description of physical reality be considered complete?. Physical Review 47: 777–780

CrossRef Google Scholar Freeman A. et al (2005) Sheldrake and his critics: the sense of being glared at. Journal of Consciousness Studies 12(6): 1–126

Google Scholar Gleason A. M. (1957) Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6: 885–893

Google Scholar Heisenberg W. (1930) The physical principles of quantum theory. University of Chicago Press, Chicago

Google Scholar Kochen S., Specker E. P. (1967) The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17: 59–87

Google Scholar Piron C. (1976) Foundations of quantum physics. W. A. Benjamin Inc., Massachusetts

Google Scholar Piron C. (1978) La Description d’un Système Physique et le Présupposé de la Théorie Classique. Annales de la Fondation Louis de Broglie 3: 131–152

Google Scholar Piron, C. (1990). Mécanique quantique. Bases et applications . Presses polytechniques et universitaires romandes, Lausanne (Second corrected edition 1998) (1st ed.).

Poincaré H. (1902) La science et l’hypothèse. Flammarion, Paris

Google Scholar Sassoli de Bianchi, M. (2011a). Ephemeral properties and the illusion of microscopic particles.

Foundations of Science , 16(4), 393–409. doi:

10.1007/s10699-011-9227-x . An Italian translation of the article is also available: “Proprietá effimere e l’illusione delle particelle microscopiche,” AutoRicerca (Vol. 2, pp. 39–76).

Sassoli de Bianchi, M. (2011b). The

δ -quantum machine, the

k -model, and the non-ordinary spatiality of quantum entities. To appear in:

Foundations of Science , arXiv:1104.4738v2 [quant-ph].

Google Scholar Sassoli de Bianchi, M. (2011c). From permanence to total availability: A quantum conceptual upgrade. To appear in:

Foundations of Science . doi:

10.1007/s10699-011-9233-z .

Smets S. (2005) The modes of physical properties in the logical foundations of physics. Logic and Logical Philosophy 14: 37–53

Google Scholar © Springer Science+Business Media B.V. 2012

Authors and Affiliations 1. Laboratorio di Autoricerca di Base Carona Switzerland