Skip to main content
Log in

A Cauchy-Dirac Delta Function

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albeverio, S., Høegh-Krohn, R., Fenstad, J., & Lindstrøm, T. (1986). Nonstandard methods in stochastic analysis and mathematical physics. Pure and Applied Mathematics, 122. Orlando, FL: Academic Press, Inc.

  • Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21

    Article  Google Scholar 

  • Arkeryd L. (2005) Nonstandard analysis. American Mathematical Monthly 112(10): 926–928

    Article  Google Scholar 

  • Barany M. J. (2011) Revisiting the introduction to Cauchy’s Cours d’analyse. Historia Mathematica 38(3): 368–388

    Article  Google Scholar 

  • Błaszczyk, P., Katz, M., & Sherry, D. (2012). Ten misconceptions from the history of analysis and their debunking. Foundations of Science. doi:10.1007/s10699-012-9285-8 and http://arxiv.org/abs/1202.4153.

  • Borovik, A., Jin, R., & Katz, M. (2012). An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4).

  • Borovik, A., & Katz, M. (2011). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science. doi:10.1007/s10699-011-9235-x and http://arxiv.org/abs/1108.2885.

  • Boyer C. (1949) The concepts of the calculus, a critical and historical discussion of the derivative and the integral. Hafner Publishing Company, New York

    Google Scholar 

  • Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535

    Article  Google Scholar 

  • Cauchy A.-L. (1815) Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (published 1827, with additional notes). Oeuvres Series 1 1: 4–318

    Google Scholar 

  • Cauchy, A. L. (1821). Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Paris: Imprimérie Royale. http://books.google.com/books?id=_mYVAAAAQAAJ&dq=cauchy&lr=&source=gbs_navlinks_s.

  • Cauchy A.-L. (1827) Mémoire sur les développements des fonctions en séries périodiques. Oeuvres Series 1 2: 12–19

    Google Scholar 

  • Cauchy, A.-L. (1837). Extrait d’une lettre à M. Coriolis, Oeuvres Complètes, Series 1, 4, 38–42; (Paris: Gauthier Villars, 1884).

  • Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1, Vol. 12, (pp. 30–36). Paris: Gauthier–Villars; 1900.

  • Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378

    Article  Google Scholar 

  • Dauben, J. (1988). Abraham Robinson and nonstandard analysis: History, philosophy, and foundations of mathematics. In W. Aspray & P. Kitcher, (Eds.), History and philosophy of modern mathematics (Minneapolis, MN, 1985), 177–200, Minnesota Stud. Philos. Sci., XI, Univ. Minnesota Press, Minneapolis, MN. http://www.mcps.umn.edu/philosophy/11_7Dauben.pdf.

  • Dauben, J. (1995). Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton, NJ: Princeton University Press.

  • Dieudonné J. (1984) Reviews: The prehistory of the theory of distributions. American Mathematical Monthly 91(6): 374–379

    Article  Google Scholar 

  • Dirac P. (1958) The principles of quantum mechanics. Clarendon Press, Oxford

    Google Scholar 

  • Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception I, the emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121

    Article  Google Scholar 

  • Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146

    Google Scholar 

  • Fisher G. (1979) Cauchy’s variables and orders of the infinitely small. The British Journal for the Philosophy of Science 30(3): 261–265

    Article  Google Scholar 

  • Fisher G. (1981) The infinite and infinitesimal quantities of du Bois-Reymond and their reception. Archive for History of Exact Sciences 24(2): 101–163

    Article  Google Scholar 

  • Fourier, J. (1822). Théorie analytique de la chaleur. Paris: Firmin Didot Père et Fils.

  • Fraenkel, A. (1946). Einleitung in die Mengenlehre. New York: Dover [originally published by Springer, Berlin, 1928].

  • Fraenkel A. (1967) Lebenskreise Aus den Erinnerungen eines jüdischen Mathematikers. Deutsche Verlags-Anstalt, Stuttgart

    Google Scholar 

  • Freudenthal, H. (1971). Cauchy, Augustin-Louis. In Dictionary of Scientific Biography, C. C. Gillispie (Ed.), Vol. 3 (131–148). New York: Charles Scribner’s Sons. http://www.encyclopedia.com/topic/Augustin-Louis_Cauchy.aspx#1.

  • Gilain, C. (1989). Cauchy et le cours d’analyse de l’Ecole polytechnique. With an editorial preface by Emmanuel Grison. Société des Amis de la Bibliothèque de l’Ecole Polytechnique. Bulletin (5), 145. http://www.sabix.org/bulletin/b5/cauchy.html.

  • Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191

    Article  Google Scholar 

  • Giordano, P., & Katz, M. (2011). Two ways of obtaining infinitesimals by refining Cantor’s completion of the reals. Preprint, http://arxiv.org/abs/1109.3553.

  • Giorello G. (1973) Una rappresentazione nonstandard delle distribuzioni temperate e la trasformazione di Fourier. Bollettino della Unione Matematica Italiana 4(7): 156–167

    Google Scholar 

  • Gray J. (2008) Plato’s ghost The modernist transformation of mathematics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Havenel J. (2007) Peirce’s Clarifications of Continuity. Transactions of the Charles S. Peirce Society 44(1): 86–133

    Google Scholar 

  • Hawking, S. (Ed). (2007). The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press (originally ublished 2005).

  • Hewitt E. (1948) Rings of real-valued continuous functions I. Transactions of the American Mathematical Society 64: 45–99

    Article  Google Scholar 

  • Kanovei, V. (1988). Correctness of the Euler method of decomposing the sine function into an infinite product. (Russian) Uspekhi Mat. Nauk, 43(4)(262), 57–81, 255; translation in Russian Math. Surveys, 43(4), 65–94 (1988).

  • Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−.9.. in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273. http://arxiv.org/abs/arXiv:1003.1501.

  • Katz K., Katz M. (2010b) When is .999...less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30

    Google Scholar 

  • Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. http://arxiv.org/abs/1108.4201 and http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00047.

  • Katz, K., & Katz, M. (2011b). Stevin numbers and reality. Foundations of Science. doi:10.1007/s10699-011-9228-9 and http://arxiv.org/abs/1107.3688.

  • Katz, K., & Katz, M. (2011c). Meaning in classical mathematics: is it at odds with Intuitionism? Intellectica, 56(2), 223–302. http://arxiv.org/abs/1110.5456.

  • Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi:10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375.

  • Katz, M., & Leichtnam, E. Commuting and non-commuting infinitesimals. American Mathematical Monthly (to appear).

  • Katz, M., & Sherry, D. (2012). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis. doi:10.1007/s10670-012-9370-y and http://arxiv.org/abs/1205.0174.

  • Katz, M., & Sherry, D. Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, to appear.

  • Katz, M., & Tall, D. (2011). The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.), Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast Monographs in Mathematics Education, Vol. 12. Charlotte, NC: Information Age Publishing, Inc. http://arxiv.org/abs/1110.5747 and http://www.infoagepub.com/products/Crossroads-in-the-History-of-Mathematics.

  • Keisler H. (1986) Jerome: Elementary calculus: An infinitesimal approach. Prindle Weber & Schimidt, Boston

    Google Scholar 

  • Keisler, H. (1994). Jerome: The hyperreal line Real numbers, generalizations of the reals, and theories of continua, 207–237, Synthese Lib, 242. Kluwer: Dordrecht.

  • Klein, F. (1908). Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).

  • Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica 14(3): 258–274

    Article  Google Scholar 

  • Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245

    Article  Google Scholar 

  • Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128

    Article  Google Scholar 

  • Lightstone A. H. (1972) Infinitesimals. American Mathematical Monthly 79: 242–251

    Article  Google Scholar 

  • Lightstone A. H., Wong K. (1975) Dirac delta functions via nonstandard analysis. Canadian Mathematical Bulletin 18(5): 759–762

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems, pp. 98–113, Amsterdam: North-Holland.

  • Lützen J. (1982) The prehistory of the theory of distributions Studies in the history of mathematics and physical sciences, Vol. 7. Springer, New York

    Book  Google Scholar 

  • Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected edn.

  • Méray H. C. R. (1869) Remarques sur la nature des quantités définies par la condition de servir de limites à des variables données. Revue des sociétiés savantes des départments, Section sciences mathématiques, physiques et naturelles, 4th ser 10: 280–289

    Google Scholar 

  • Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83(6): 1165–1198

    Article  Google Scholar 

  • Novikov, S. P. (2004). The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the West. Amer. Math. Soc. Transl. Ser. 2, 212, Geometry, topology, and mathematical physics, 1–24, Amer. Math. Soc., Providence, RI, 2004. (Translated from Istor.-Mat. Issled. (2) No. 7(42), 326–356, 369; by A. Sossinsky.)

  • Peirce C. S. (1897) Three grades of clearness. In “The Logic of Relatives”. The Monist 7: 161–217

    Article  Google Scholar 

  • Péraire Y. (2006) A mathematical framework for Dirac’s calculus. Bulletin of the Belgian Mathematical society. Simon Stevin 13(5): 1007–1031

    Google Scholar 

  • Robinson, A. (1961). Non-standard analysis. Nederl. Akad. Wetensch. Proc. Ser. A, 64 = Indag. Math. 23, 432–440; [reprinted in selected works, see item [73], pp. 3–11].

  • Robinson, A. (1967). The metaphysics of the calculus. In I. Lakatos (Ed.), Problems in the philosophy of mathematics, (pp. 28–46). Amsterdam: North-Holland.

  • Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions y W. A. J. Luxemburg and S. Körner. New Haven, Conn: Yale University Press.

  • Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199

    Article  Google Scholar 

  • Schmieden C., Laugwitz D. (1958) Eine Erweiterung der Infinitesimalrechnung. Mathematische Zeitschrift 69: 1–39

    Article  Google Scholar 

  • Sherry D. (1987) The wake of Berkeley’s analyst: Rigor mathematicae?. Studies in History and Philosophy of Science 18(4): 455–480

    Article  Google Scholar 

  • Sinaceur H. (1973) Cauchy et Bolzano. Revue d’ Histoire des Science et de leurs Applications 26(2): 97–112

    Article  Google Scholar 

  • Skolem Th. (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161

    Google Scholar 

  • Smithies, F. Review of Lützen (item [63] above) (1984). http://www.ams.org/mathscinet-getitem?mr=667854.

  • Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis Sympos., Oberwolfach, 1970), pp. 47–64. Studies in Logic and Foundations of Math., Vol. 69. Amsterdam: North-Holland.

  • Takeuti G. (1962) Dirac space. Proceedings of the Japan Academy 38: 414–418

    Article  Google Scholar 

  • Todorov T. D. (1990) A nonstandard delta function. Proceedings of the American Mathematical Society 110(4): 1143–1144

    Article  Google Scholar 

  • Yamashita, H. (2007). Comment on: “Pointwise analysis of scalar fields: a nonstandard approach” [J. Math. Phys. 47(2006), no. 9, 092301; 16 pp]. Journal of Mathematical Physics, 48(8), 084101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, M.G., Tall, D. A Cauchy-Dirac Delta Function. Found Sci 18, 107–123 (2013). https://doi.org/10.1007/s10699-012-9289-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-012-9289-4

Keywords

Navigation