The δ-Quantum Machine, the k-Model, and the Non-ordinary Spatiality of Quantum Entities

Abstract

The purpose of this article is threefold. Firstly, it aims to present, in an educational and non-technical fashion, the main ideas at the basis of Aerts’ creation-discovery view and hidden measurement approach: a fundamental explanatory framework whose importance, in this author’s view, has been seriously underappreciated by the physics community, despite its success in clarifying many conceptual challenges of quantum physics. Secondly, it aims to introduce a new quantum machine—that we call the δ quantum machine—which is able to reproduce the transmission and reflection probabilities of a one-dimensional quantum scattering process by a Dirac delta-function potential. The machine is used not only to demonstrate the pertinence of the above mentioned explanatory framework, in the general description of physical systems, but also to illustrate (in the spirit of Aerts’ ∊-model) the origin of classical and quantum structures, by revealing the existence of processes which are neither classical nor quantum, but irreducibly intermediate. We do this by explicitly introducing what we call the k-model and by proving that its processes cannot be modelized by a classical or quantum scattering system. The third purpose of this work is to exploit the powerful metaphor provided by our quantum machine, to investigate the intimate relation between the concept of potentiality and the notion of non-spatiality, that we characterize in precise terms, introducing for this the new concept of process-actuality.

This is a preview of subscription content, log in to check access.

References

  1. Accardi L. (1982) On the statistical meaning of the complex numbers in quantum mechanics. Nuovo Cimento 34: 161

    Google Scholar 

  2. Aerts D. (1982) Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics 12: 1131–1170

    Article  Google Scholar 

  3. Aerts D. (1984) The missing element of reality in the description of quantum mechanics of the EPR paradox situation. Helvetica physica Acta 57: 421–428

    Google Scholar 

  4. Aerts D. (1992a) A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics 27: 202–210

    Article  Google Scholar 

  5. Aerts D. (1992b) The construction of reality and its influence on the understanding of quantum structures. International Journal of Theoretical Physics 31: 1815–1837

    Article  Google Scholar 

  6. Aerts D. (1995) Quantum structures: An attempt to explain the origin of their appearance in nature. International Journal of Theoretical Physics 34: 1165

    Article  Google Scholar 

  7. Aerts D. (1996a) Relativity theory: What is reality?. Foundations of Physics 26: 1627–1644

    Article  Google Scholar 

  8. Aerts D. (1996b) Towards a framework for possible unification of quantum and relativity theories. International Journal of Theoretical Physics 35: 2399–2416

    Article  Google Scholar 

  9. Aerts D. (1998) The entity and modern physics: The creation-discovery view of reality. In: Castellani E. (Ed.). Interpreting bodies: Classical and quantum objects in modern physics. Princeton Unversity Press, Princeton

    Google Scholar 

  10. Aerts D. (1999a) The stuff the world is made of: Physics and reality, p. 129. In: Aerts D., Broekaert J., Mathijs E. (eds) The white book of ‘Einstein meets magritte’. Kluwer, Dordrecht, p 274

    Google Scholar 

  11. Aerts D. (1999b) Quantum mechanics: Structures, axioms and paradoxes, p. 141. In: Aerts D., Broekaert J., Mathijs E. (eds) The indigo book of ‘Einstein meets magritte’. Kluwer, Dordrecht, p 239

    Google Scholar 

  12. Aerts D. (2000) The description of joint quantum entities and the formulation of a paradox. International Journal of Theoretical Physics 39: 485–496

    Google Scholar 

  13. Aerts D. (2009) Quantum particles as conceptual entities. A possible explanatory framework for quantum theory. Foundations of Science 14: 361–411

    Article  Google Scholar 

  14. Aerts D. (2010) Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics 49: 2950–2970

    Article  Google Scholar 

  15. Aerts, D., & Sozzo, S. (2011a). Contextual risk and its relevance in economics. Journal of Engineering Science and Technology Review. arXiv:1105.1812 [physics.soc-ph].

  16. Aerts, D., & Sozzo, S. (2011b). A contextual risk model for the Ellsberg paradox. Journal of Engineering Science and Technology Review. arXiv:1105.1814v1 [physics.soc-ph].

    Google Scholar 

  17. Aerts D., Durt T. (1994) Quantum, classical and intermediate, an illustrative example. Foundations of Science 24: 1353

    Google Scholar 

  18. Aerts D. et al (1987) The origin of the non-classical character of the quantum probability model. In: Blanquiere A. (Ed.), Information, complexity, and control in quantum physics. Springer, New York

    Google Scholar 

  19. Aerts, D., et al. (1990). An attempt to imagine parts of the reality of the micro-world. In J. Mizerski (Ed.), Problems in quantum physics II; Gdansk ’89 (pp. 3–25). Singapore: World Scientific Publishing Company.

    Google Scholar 

  20. Amrein W. O. (1981) Non-relativistic quantum dynamics. Riedel, Dordrecht

    Google Scholar 

  21. Birkhoff G., Von Neumann J. (1936) The logic of quantum mechanics. The Annals of Mathematics 37: 823

    Article  Google Scholar 

  22. Born M. (1926) Quantenmechanik der Stoßvorgänge. zeitschrift für physik 38: 803–827

    Article  Google Scholar 

  23. Coecke B. (1998) A representation for compound quantum systems as individual entities: Hard acts of creation and hidden correlations. Foundations of Physics 28: 1109–1135

    Article  Google Scholar 

  24. Emch G. G. (1984) Mathematical and conceptual foundations of twentieth century physics. North-Holland, Amsterdam

    Google Scholar 

  25. Feynman R. P. (1992) The character of physical law. Penguin Books, London

    Google Scholar 

  26. Foulis D., Randall C. (1972) Operational statistics I–Basic concepts. Journal of Mathematical Physics 11: 1667–1675

    Article  Google Scholar 

  27. Gudder S. P. (1988) Quantum probability. Academic Press, Inc. Harcourt Brave Jovanovich, New York

    Google Scholar 

  28. Jauch J. M. (1968) Foundations of quantum mechanics. Addison-Wesley, Reading, Mass

    Google Scholar 

  29. Piron C. (1976) Foundations of quantum physics. W. A. Benjamin, Massachusetts

    Google Scholar 

  30. Piron C. (1978) La Description d’un Système Physique et le Présupposé de la Théorie Classique. Annales de la Fondation Louis de Broglie 3: 131–152

    Google Scholar 

  31. Piron, C. (1990). Mécanique quantique: Bases et applications. Presses polytechniques et universitaires romandes, Lausanne, Switzerland.

  32. Pitovski I. (1989) Quantum probability—quantum logic. Springer, Berlin

    Google Scholar 

  33. Randall, C., & Foulis, D. (1983). A mathematical language for quantum physics, in Les Fondements de la Mecanique Quantique, ed. C. Gruber et al, A.V.C.P., case postale 101, 1015 Lausanne, Suisse.

  34. Rauch H. (1988) Neutron interferometric tests of quantum mechanics. Helvetica Physica Acta 61: 589

    Google Scholar 

  35. Sassoli de Bianchi, M. (2011a). From permanence to total availability: A quantum conceptual upgrade. Foundations of Science. doi:10.1007/s10699-011-9233-z.

  36. Sassoli de Bianchi, M. (2011b). Time-delay of classical and quantum scattering processes: A conceptual overview and a general definition. Central European Journal of Physics. doi:10.2478/s11534-011-0105-5.

  37. Sassoli de Bianchi, M. (2011c). Ephemeral properties and the illusion of microscopic particles. Foundations of Science, 16(4), 393–409. doi:10.1007/s10699-011-9227-x. An Italian translation of the article is also available: Proprietá effimere e l’illusione delle particelle microscopiche. AutoRicerca, Volume 2, pp. 39–76 (2011).

  38. Segal I. E. (1947) Postulates for general quantum mechanics. Annals of Mathematics 48: 930–948

    Article  Google Scholar 

  39. Smets S. (2005) The modes of physical properties in the logical foundations of physics Logic and Logical Philosophy 14:37–53

    Google Scholar 

  40. Vassell M. O., Lee J., Lockwood H. F. et al (1983) Multibarrier tunneling in Ga1-x Al x As/GaAs heterostructures. Journal of Applied Physics 54: 5206–5213

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Sassoli de Bianchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sassoli de Bianchi, M. The δ-Quantum Machine, the k-Model, and the Non-ordinary Spatiality of Quantum Entities. Found Sci 18, 11–41 (2013). https://doi.org/10.1007/s10699-011-9284-1

Download citation

Keywords

  • Quantum structures
  • Creation-discovery view
  • Hidden measurement approach
  • One-dimensional scattering
  • Delta-function potential
  • Potentiality
  • Non-spatiality