Foundations of Science

, 16:393 | Cite as

Ephemeral Properties and the Illusion of Microscopic Particles

Article

Abstract

Founding our analysis on the Geneva-Brussels approach to quantum mechanics, we use conventional macroscopic objects as guiding examples to clarify the content of two important results of the beginning of twentieth century: Einstein–Podolsky–Rosen’s reality criterion and Heisenberg’s uncertainty principle. We then use them in combination to show that our widespread belief in the existence of microscopic particles is only the result of a cognitive illusion, as microscopic particles are not particles, but are instead the ephemeral spatial and local manifestations of non-spatial and non-local entities.

Keywords

Microscopic particle Existence Spatiality Individuality 

References

  1. Aerts D. (1982) Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics 12: 1131–1170CrossRefGoogle Scholar
  2. Aerts D. (1984) The missing element of reality in the description of quantum mechanics of the EPR paradox situation. Helvetia Physica Acta 57: 421–428Google Scholar
  3. Aerts D. (1990) An attempt to imagine parts of the reality of the micro-world. In: Mizerski J. et al (eds) Problems in quantum physics II; Gdansk’89. World Scientific, Singapore, pp 3–25Google Scholar
  4. Aerts D. (1992a) The construction of reality and its influence on the understanding of quantum structures. International Journal of Theoretical Physics 31: 1815–1837CrossRefGoogle Scholar
  5. Aerts D. (1992b) A possible explanation for the probabilities of quantum mechanics. International Journal of Theoretical Physics 27: 202–210Google Scholar
  6. Aerts D. (1998) The entity and modern physics: The creation-discovery view of reality. In: Castellani E. (Ed.) Interpreting bodies: Classical and quantum objects in modern physics. Princeton University Press, PrincetonGoogle Scholar
  7. Aerts D. (1999) The stuff the world is made of: Physics and reality (p. 129). In: Aerts D., Broekaert J., Mathijs E. (eds) The white book of ‘Einstein Meets Magritte’. Kluwer, DordrechtGoogle Scholar
  8. Aerts D. (2000) The description of joint quantum entities and the formulation of a paradox. International Journal of Theoretical Physics 39: 485–496Google Scholar
  9. Aerts D. (2009) Quantum particles as conceptual entities. A possible explanatory framework for quantum theory. Foundations of Science 14: 361–411CrossRefGoogle Scholar
  10. Aerts D. (2010) Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics 49: 2950–2970CrossRefGoogle Scholar
  11. Aspect A. (1999) Bell’s inequality test: More ideal than ever. Nature (London) 398: 189CrossRefGoogle Scholar
  12. Aspect A. et al (1982) Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters 49: 91CrossRefGoogle Scholar
  13. Bell, J. S. (1964). On the Einstein–Podolsky–Rosen paradox. In Physics (Vol. 1, p. 195), Long Island City, NY.Google Scholar
  14. Bell J. S. (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, CambridgeGoogle Scholar
  15. Christiaens, W. (2002). Some notes on Aerts’ interpretation of the EPR-paradox and the violation of Bell-inequalities (pp. 259–286). In Probing the structure of quantum mechanics: Nonlocality, computation and axiomatics (394 pp.). Singapore: World Scientific.Google Scholar
  16. Einstein A., Podolsky B., Rosen N. (1935) Can quantum-mechanical description of physical reality be considered complete?. Physical Review 47: 777–780CrossRefGoogle Scholar
  17. Feynman R. (1970) The Feynman lectures on physics. Addison Wesley Longman, Reading, MAGoogle Scholar
  18. Feynman R. P. (1992) The character of physical law. Penguin Books, LondonGoogle Scholar
  19. Henry R. C. (2009) The real scandal of quantum mechanics. American Journal of Physics 77(10): 869–870CrossRefGoogle Scholar
  20. Hobson A. (2005) Electrons as field quanta: A better way to teach quantum physics in introductory general physics courses. American Journal of Physics 73(7): 630–634CrossRefGoogle Scholar
  21. Hobson A. (2009a) Response to ‘The scandal of quantum mechanics,’ by N. G. van Kampen. American Journal of Physics 77(4): 293CrossRefGoogle Scholar
  22. Hobson A. (2009b) Response to ‘The real scandal of quantum mechanics,’ by R. Conn Henry. American Journal of Physics 77(10): 870–871CrossRefGoogle Scholar
  23. Piron C. (1976) Foundations of quantum physics. W. A. Benjamin Inc., MassachusettsGoogle Scholar
  24. Piron C. (1978) La Description d’un Système Physique et le Présupposé de la Théorie Classique. Annales de la Fondation Louis de Broglie 3: 131–152Google Scholar
  25. Piron, C. (1990). Mécanique quantique. Bases et applications (1st ed.). Presses polytechniques et universitaires romandes, Lausanne (2nd corrected edition 1998).Google Scholar
  26. Piron C. (1999) Quanta and relativity: Two failed revolutions (p. 107). In: Aerts D., Broekaert J., Mathijs E. (eds) The White book of ‘Einstein meets Magritte’. Kluwer, Dordrecht, p 274Google Scholar
  27. Preparata G. (2002) An introduction to realistic quantum physics. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  28. Smets S. (2005) The modes of physical properties in the logical foundations of physics. Logic and Logical Philosophy 14: 37–53Google Scholar
  29. van Kampen N. G. (2008) The scandal of quantum mechanics. American Journal of Physics 76(11): 989–990CrossRefGoogle Scholar
  30. Weinberg S. (1983) Heinz Pagels’s “The Cosmic Code”. Bantam Books, New York, p 239Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratorio di Autoricerca di BaseCaronaSwitzerland

Personalised recommendations