Foundations of Science

, Volume 17, Issue 1, pp 51–89 | Cite as

A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography

Article

Abstract

We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.

Keywords

Abraham Robinson Adequality Archimedean continuum Bernoullian continuum Burgess Cantor Cauchy Completeness Constructivism Continuity Dedekind Du Bois-Reymond Epsilontics Errett Bishop Felix Klein Fermat-Robinson standard part Infinitesimal Law of excluded middle Leibniz-Łoś transfer principle Nominalistic reconstruction Nominalism Non-Archimedean Rigor Simon Stevin Weierstrass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander A. (2001) Exploration mathematics: the rhetoric of discovery and the rise of infinitesimal methods. Configurations 9(1): 1–36CrossRefGoogle Scholar
  2. Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archievs of Rational Mechanical Analysis 77(1): 11–21CrossRefGoogle Scholar
  3. Arkeryd L. (2005) Nonstandard analysis. American Mathematics Monthly 112(10): 926–928CrossRefGoogle Scholar
  4. Avigad J. (2007) Response to questionnaire. In: Hendricks Vincent F., Leitgeb H. (eds) Philosophy of mathematics: 5 Questions. Automatic/VIP Press, New YorkGoogle Scholar
  5. Barner, K. Fermats “adaequare”—und kein Ende? Mathematische Semesterberichte. http://www.springerlink.com/content/5r32u25207611m37/.
  6. Barrow I. (1860) The mathematical works, vol. 2. Cambridge University Press, CambridgeGoogle Scholar
  7. Beeson, M. (1985). Foundations of constructive mathematics. Metamathematical studies. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 6. Berlin: Springer.Google Scholar
  8. Bell J. (2008) A primer of infinitesimal analysis, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Bell, J. (2009). Continuity and infinitesimals. Stanford Encyclopedia of philosophy. Revised 20 july ’09.Google Scholar
  10. Berkeley, G. (1734). The Analyst, a Discourse Addressed to an Infidel Mathematician.Google Scholar
  11. Billinge H. (2000) Applied constructive mathematics: On G. Hellman’s “Mathematical constructivism in spacetime. British Journal of Philosophical Science 51(2): 299–318CrossRefGoogle Scholar
  12. Billinge H. (2003) Did Bishop have a philosophy of mathematics?. Philosophy in Mathematics (3) 11(2): 176–194Google Scholar
  13. Bishop E. (1967) Foundations of constructive analysis. McGraw-Hill Book Co, New YorkGoogle Scholar
  14. Bishop, E., & Bridges, D. (1985). Constructive analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 279. Berlin: Springer.Google Scholar
  15. Bishop, E. (1968). Mathematics as a numerical language. 1970 Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968) pp. 53–71. Amsterdam: North-Holland.Google Scholar
  16. Bishop, E. (1974). The crisis in contemporary mathematics. Proceedings of the American Academy Workshop on the Evolution of Modern Mathematics (Boston, Mass., 1974). Historia Mathematics 2 (’75), no. 4, 507–517.Google Scholar
  17. Bishop, E. (1985). Schizophrenia in contemporary mathematics [published posthumously; originally distributed in 1973]. In Errett Bishop: Reflections on him and his research (San Diego, Calif., 1983), pp. 1–32, Contemporary Mathematics 39, Am. Math. Soc., Providence, RI.Google Scholar
  18. Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-Classical Mathematics 2009 (Hejnice, 18–22 june 2009), pp. 21–24.Google Scholar
  19. Boniface, J., & Schappacher, N. (2001). “Sur le concept de nombre en mathématique”: Cours inédit de Leopold Kronecker à Berlin (1891). [“On the concept of number in mathematics”: Leopold Kronecker’s 1891 Berlin lectures] Review in Histoire Mathematics 7(2), 206–275.Google Scholar
  20. Boyer C. (1949) The concepts of the calculus. Hafner Publishing Company, New YorkGoogle Scholar
  21. Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535CrossRefGoogle Scholar
  22. Breger H. (1994) The mysteries of adaequare: A vindication of Fermat. Archive for History of Exact Sciences 46(3): 193–219CrossRefGoogle Scholar
  23. Bridges, D. (1994). A constructive look at the real number line. In Real numbers, generalizations of the reals, and theories of continua, pp. 29–92, see item [45].Google Scholar
  24. Bridges D. (1999) Can constructive mathematics be applied in physics?. Journal of Philosophical Logic 28(5): 439–453CrossRefGoogle Scholar
  25. Burgess J. (1983) Why I am not a nominalist. Notre Dame Journal of Formal Logic 24(1): 93–105CrossRefGoogle Scholar
  26. Burgess J. (2004) Mathematics and Bleak House. Philosophia Mathematica (3) 12: 18–36CrossRefGoogle Scholar
  27. Burgess J., Rosen G. (1997) A subject with no object. Strategies for nominalistic interpretation of mathematics. The Clarendon Press Oxford University Press, New YorkGoogle Scholar
  28. Cauchy A.L. (1821) Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Imprimérie Royale, ParisGoogle Scholar
  29. Cauchy, A. L. (1823). Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal (Paris: Imprimérie Royale, 1823). In Oeuvres complètes, Ser. 2, vol. 4, pp. 9–261. Paris: Gauthier-Villars.Google Scholar
  30. Cauchy, A. L. (1829). Leçons sur le calcul différentiel. In Oeuvres complètes, Ser. 2, vol. 4, pp. 263–609. Paris: Gauthier-Villars, 1899.Google Scholar
  31. Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Ser. 1, vol. 12, pp. 30–36. Paris: Gauthier–Villars, 1900Google Scholar
  32. Corry, L. (2006). Axiomatics, empiricism, and Anschauung in Hilbert’s conception of geometry: Between arithmetic and general relativity. The architecture of modern mathematics, pp. 133–156. Oxford: Oxford University Press.Google Scholar
  33. Cousquer E. (1998) La fabuleuse histoire des nombres. Diderot, ParisGoogle Scholar
  34. Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. British Journal for the Philosophy of Science 39(3): 375–378CrossRefGoogle Scholar
  35. d’Alembert, J. (1754). Différentiel. Entry in Encyclopédie ou Dictionnaire Raisonné des Sciences, des Arts et des Métiers, vol. 4.Google Scholar
  36. Dauben, J. (1992). Conceptual revolutions and the history of mathematics: two studies in the growth of knowledge (1984). In Revolutions in mathematics, pp. 49–71, Oxford Science Publishers. New York: Oxford University Press.Google Scholar
  37. Dauben, J. (1995). Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton, NJ: Princeton University Press.Google Scholar
  38. Dauben, J. (1996). Arguments, logic and proof: mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992), pp. 113–148, Stud. Wiss. Soz. Bildungsgesch. Math., 11, Vandenhoeck & Ruprecht, Göttingen.Google Scholar
  39. Davies E. B. (2005) A defence of mathematical pluralism. Philosophy in Mathematics (3) 13(3): 252–276CrossRefGoogle Scholar
  40. Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. New York: Wiley-Interscience. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html.
  41. Davis P., Hersh R. (1980) The mathematical experience. With an introduction by Gian-Carlo Rota. Birkhäuser, Boston, MAGoogle Scholar
  42. Dedekind, R. (1872). Continuity and irrational numbers.Google Scholar
  43. Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213CrossRefGoogle Scholar
  44. Dummett M. (1977) Elements of intuitionism. Written with the assistance of Roberto Minio. Oxford Logic Guides. Clarendon Press, OxfordGoogle Scholar
  45. Dummett M. (2000) Elements of intuitionism, 2nd edn. Oxford Logic Guides, 39. The Clarendon Press/Oxford University Press, New YorkGoogle Scholar
  46. Ehrlich, P. (1994). Real numbers, generalizations of the reals, and theories of continua. In P. Ehrlich & P. Ehrlich (Eds.), Synthese Library, 242 Dordrecht: Kluwer.Google Scholar
  47. Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121CrossRefGoogle Scholar
  48. Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146Google Scholar
  49. Ewald W. (1996) From Kant to Hilbert. A source book in the foundations of mathematics. Clarendon Press, OxfordGoogle Scholar
  50. Fearnley-Sander D. (1979) Hermann Grassmann and the creation of linear algebra. American Mathematics Monthly 86(10): 809–817CrossRefGoogle Scholar
  51. Feferman, S. (2000). Relationships between constructive, predicative and classical systems of analysis. Proof theory (Roskilde, 1997), 221–236, Synthese Library, 292. Dordrecht: Kluwer.Google Scholar
  52. Feferman, S. (2009). Conceptions of the continuum [Le continu mathématique. Nouvelles conceptions, nouveaux enjeux]. Intellectica, 51, 169–189. See also http://math.stanford.edu/~feferman/papers/ConceptContin.pdf.
  53. Frege, G. (1964). Begriffsschrift und andere Aufsätze. (German) Zweite Auflage. Mit E. Husserls und H. Scholz’ Anmerkungen herausgegeben von Ignacio Angelelli Georg Olms Verlagsbuchhandlung, Hildesheim.Google Scholar
  54. Freudenthal H. (1971) Cauchy, Augustin-Louis. In: Gillispie C.C. (Ed.) Dictionary of scientific biography, vol. 3. Charles Scribner’s sons, New York, pp 131–148Google Scholar
  55. Freudenthal H. (1971) Did Cauchy plagiarise Bolzano?. Archive for History of Exact Sciences 7: 375–392CrossRefGoogle Scholar
  56. Fowler D. H. (1992) Dedekind’s theorem: \({\sqrt 2\times\sqrt 3=\sqrt6}\). American Mathematics Monthly 99(8): 725–733CrossRefGoogle Scholar
  57. Gandz S. (1936) The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon (c. 1350). Isis 25: 16–45CrossRefGoogle Scholar
  58. Gillies, D. (1992). The Fregean revolution in logic. In: Revolutions in Mathematics (pp. 265–305). New York: Oxford Science Publ./Oxford University Press.Google Scholar
  59. Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191CrossRefGoogle Scholar
  60. Giusti, E. (2009). Les méthodes des maxima et minima de Fermat. Annals of Faculty in Science and Toulouse Mathematics (6), 18 (2009), Fascicule Special, 59–85.Google Scholar
  61. Goldblatt R. (1998) Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics, 188. Springer, New YorkGoogle Scholar
  62. Grabiner J. (1981) The origins of Cauchy’s rigorous calculus. MIT Press, Cambridge, MAGoogle Scholar
  63. Grabiner J. (1983) Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematics Monthly 90(3): 185–194CrossRefGoogle Scholar
  64. Grattan-Guinness, I. (2004) The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica, 163–185.Google Scholar
  65. Hardy, G. H., & Wright, E. M. (2008). An introduction to the theory of numbers, 6th edn. Revised by D. R. Heath-Brown and J. H. Silverman. Oxford University Press, Oxford.Google Scholar
  66. Heidegger, M. (1962). Being and time. (J. Macquarrie and E. Robinson, trans.) New York: Harper & Row.Google Scholar
  67. Heijting, A. (1973). Address to Professor A. Robinson. At the occasion of the Brouwer memorial lecture given by Prof. A.Robinson on the 26th April 1973. Nieuw Archievs of Wiskers (3) 21, 134–137.Google Scholar
  68. Hellman G. (1993) Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem. Journal of Philosophical Logic 12: 221–248CrossRefGoogle Scholar
  69. Hellman G. (1998) Mathematical constructivism in spacetime. British Journal for the Philosophy of Science 49(3): 425–450CrossRefGoogle Scholar
  70. Hewitt E. (1948) Rings of real-valued continuous functions. I. Transaction in American Mathematical Society 64: 45–99CrossRefGoogle Scholar
  71. Heyting A. (1956) Intuitionism. An introduction. North-Holland Publishing Co, AmsterdamGoogle Scholar
  72. Hilbert, D. (1919–1920) Natur und Mathematisches Erkennen: Vorlesungen, gehalten 1919–1920 in Göttingen. Nach der Ausarbeitung von Paul Bernays (Edited and with an English introduction by David E. Rowe), Basel, Birkhäuser (1992).Google Scholar
  73. Hobson, E. W. (1994). On the infinite and the infinitesimal in mathematical analysis. Proceedings London Mathematical Society, vol. s1-35 (1902), no. 1, pp. 117–139 (reprinted in Real numbers, generalizations of the reals, and theories of continua, 3–26, Synthese Lib., 242. Dordrecht: Kluwer.Google Scholar
  74. Jensen C. (1969) Pierre Fermat’s method of determining tangents of curves and its application to the conchoid and the quadratrix. Centaurus 14: 72–85CrossRefGoogle Scholar
  75. Jourdain P.E.B. (1913) The origins of Cauchy’s conceptions of a definite integral and of the continuity of a function. Isis I: 661–703CrossRefGoogle Scholar
  76. Kästner, A. G. (1758). Anfangsgründe der Mathematik (Foundations of Mathematics).Google Scholar
  77. Katz, K., & Katz, M. (2010). Zooming in on infinitesimal 1−.9.. in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273 See arXiv:1003.1501.Google Scholar
  78. Katz K., Katz M. (2010) When is .999 . . . less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30Google Scholar
  79. Katz, K., & Katz, M. (2011). Cauchy’s continuum. Perspectives on Science. (in press).Google Scholar
  80. Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach, 2nd edn. Prindle, Weber & Schimidt, Boston, ’86. Available online at http://www.math.wisc.edu/~keisler/calc.html.
  81. Keisler, H. J. (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, pp. 207–237, Synthese Lib., vol. 242. Dordrecht: Kluwer.Google Scholar
  82. Klein, F. Elementary mathematics from an advanced standpoint. vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924] Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).Google Scholar
  83. Koetsier, T. (1991). Lakatos’ philosophy of mathematics. A historical approach. Studies in the History and Philosophy of Mathematics, 3. Amsterdam: North-Holland.Google Scholar
  84. Kopell, N., & Stolzenberg, G. (1975) Commentary on E. Bishop’s talk (Historia Math. 2 (1975), 507–517). Proceedings of the American Academy Workshop on the Evolution of Modern Mathematics (Boston, Mass., 1974). Historia Mathematics, 2(4), 519–521.Google Scholar
  85. Kreisel G. (1958) Review: Wittgenstein’s remarks on the foundations of mathematics. The British Journal for the Philosophy of Science 9(34): 135–158CrossRefGoogle Scholar
  86. Lagrange, J.-L. (1811) Mécanique Analytique. Courcier. reissued by Cambridge University Press, 2009.Google Scholar
  87. Lakatos, I. (1966). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics. Mathematics Intelligencer 1 (1978), no. 3, 151–161 (originally published in 1966).Google Scholar
  88. Lakoff, G., & Núñez R. (2000). Where mathematics comes from. How the embodied mind brings mathematics into being New York: Basic BooksGoogle Scholar
  89. Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245CrossRefGoogle Scholar
  90. Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des Sciences 45(1): 115–128CrossRefGoogle Scholar
  91. Laugwitz D. (2000) Comments on the paper: “Two letters by N. N. Luzin to M. Ya. Vygodskiĭ”. American Mathematics Monthly 107(3): 267–276CrossRefGoogle Scholar
  92. Lightstone A. H. (1972) Infinitesimals. American Mathematics Monthly 79: 242–251CrossRefGoogle Scholar
  93. Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems, pp. 98–113. Amsterdam: North-Holland.Google Scholar
  94. Luzin, N. N. (1931). Two letters by N. N. Luzin to M. Ya. Vygodskii. With an introduction by S. S. Demidov. Translated from the 1997 Russian original by A. Shenitzer. American Mathematics Monthly 107(1), 64–82 (2000)Google Scholar
  95. Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. Foundations in Science 10(1): 7–23CrossRefGoogle Scholar
  96. Mahoney M. (1973) The mathematical career of Pierre de Fermat. Princeton University Press, Princeton, NJGoogle Scholar
  97. Mahoney, M. (1994). The mathematical career of Pierre de Fermat, 1601–1665, 2nd edn. Princeton Paperbacks. Princeton, NJ: Princeton University Press.Google Scholar
  98. Manin, Y. (1977). A course in mathematical logic. Translated from the Russian by Neal Koblitz. Graduate Texts in Mathematics, 53. New York: Springer.Google Scholar
  99. Meschkowski H. (1965) Aus den Briefbuchern Georg Cantors. Archive for History of Exact Sciences 2: 503–519CrossRefGoogle Scholar
  100. Moore M. (2002) Archimedean intuitions. Theoria (Stockholm) 68(3): 185–204Google Scholar
  101. Moore M. (2007) The completeness of the real line. Crí tica: Revista Hispanoamericana de Filosofí a 39(117): 61–86Google Scholar
  102. Muntersbjorn M. (2003) Representational innovation and mathematical ontology. Logic and mathematical reasoning (Mexico City, 1997). Synthese 134(1–2): 159–180CrossRefGoogle Scholar
  103. Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin on American Mathematical Society 83(6): 1165–1198CrossRefGoogle Scholar
  104. Novikov, S. P. (2002). The second half of the 20th century and its results: The crisis of the society of physicists and mathematicians in Russia and in the West. (Russian) Istor.-Mat. Issled. (2) No. 7(42), 326–356, 369.Google Scholar
  105. Novikov, S. P. (2002). The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the Western American Mathematical Society. Transl. Ser. 2, 212, Geometry, topology, and mathematical physics, 1–24, Am. Math. Soc., Providence, RI, 2004. (Translated from Istor.-Mat. Issled. (2) No. 7(42), 326–356, 369; by A. Sossinsky.)Google Scholar
  106. Peirce, C. (1903). Collected Papers of Charles Sanders Peirce.Google Scholar
  107. Pierpont J. (1899) On the arithmetization of mathematics. Bulletin on American Mathematical Society 5(8): 394–406CrossRefGoogle Scholar
  108. Poisson, S. D. (1833). Traité de méchanique, Part I (2nd ed.). Paris.Google Scholar
  109. Pourciau Bruce (1999) The education of a pure mathematician. American Mathematics Monthly 106(8): 720–732CrossRefGoogle Scholar
  110. Pourciau Bruce (2000) Intuitionism as a (failed) Kuhnian revolution in mathematics. Studies in History and Philosophy and Science 31A(2): 297–329CrossRefGoogle Scholar
  111. Putnam, H. (2007). Wittgenstein and the Real Numbers. Wittgenstein and the Moral Life. In A. Crary (Ed.), (pp. 235–250). Cambridge, MA: MIT Press.Google Scholar
  112. Rappaport K. (1981) S. Kovalevsky: A mathematical lesson. American Mathematics Monthly 88(8): 564–574CrossRefGoogle Scholar
  113. Reyes G. M. (2004) The Rhetoric in Mathematics: Newton, Leibniz, the Calculus, and the Rhetorical Force of the Infinitesimal. Quarterly Journal of Speech 90(2): 159–184CrossRefGoogle Scholar
  114. Richman, F. (1994). Confessions of a formalist, Platonist intuitionist. April 9, 1994. Available at http://math.fau.edu/Richman/HTML/Confess.htm.
  115. Richman F. (1996) Interview with a constructive mathematician. Modern Logic 6(3): 247–271Google Scholar
  116. Robinson A. (1966) Non-standard analysis. North-Holland, AmsterdamGoogle Scholar
  117. Robinson, A. (1967). The metaphysics of the calculus. In Problems in the philosophy of mathematics, (pp. 28–46). Amsterdam: North-Holland.Google Scholar
  118. Robinson, A. (1979). Selected papers of Abraham Robinson, vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg and S. Körner. Yale University Press, New Haven, Conn.Google Scholar
  119. Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199CrossRefGoogle Scholar
  120. Sad L. A., Teixeira M. V., Baldino R. B. (2001) Cauchy and the problem of point-wise convergence. Archieves in International Historical Science 51(147): 277–308Google Scholar
  121. Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.Google Scholar
  122. Scott, J. (1981). The Mathematical Work of John Wallis, D.D., F.R.S. (1616–1703). New York, NY: Chelsea Publishing Co.Google Scholar
  123. Sepkoski D. (2005) Nominalism and constructivism in seventeenth-century mathematical philosophy. Historia Mathematica 32(1): 33–59CrossRefGoogle Scholar
  124. Sfard A. (1994) Reification as the birth of metaphor. For the Learning of Mathematics 14(1): 44–55Google Scholar
  125. Shapiro S. (1997) Philosophy of mathematics. Structure and ontology. Oxford University Press, New YorkGoogle Scholar
  126. Shapiro S. (2001) Why anti-realists and classical mathematicians cannot get along. Topoi 20(1): 53–63CrossRefGoogle Scholar
  127. Sherry D. (1987) The wake of Berkeley’s Analyst: Rigor mathematicae?. Studies in Historical Philosophy and Science 18(4): 455–480CrossRefGoogle Scholar
  128. Sherry D. (2009) The role of diagrams in mathematical arguments. Foundations of science 14: 59–74CrossRefGoogle Scholar
  129. Sinaceur H. (1973) Cauchy et Bolzano. Review in Histoire Science Applications 26(2): 97–112CrossRefGoogle Scholar
  130. Smithies F. (1986) Cauchy’s conception of rigour in analysis. Archieves in Historical Exact Science 36(1): 41–61CrossRefGoogle Scholar
  131. Stevin, S. (1958). The principal works of Simon Stevin. Vols. IIA, IIB: Mathematics. In: D. J. Struik, C. V. Swets & Zeitlinger (Eds.), Amsterdam 1958. Vol. IIA: v+pp. 1–455 (1 plate). Vol. IIB: 1958 iv+pp, pp. 459–976.Google Scholar
  132. Stillwell J. (2006) Yearning for the impossible. The surprising truths of mathematics. A K Peters Ltd, Wellesley, MAGoogle Scholar
  133. Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970). Studies in Logic and Foundations of Math., 69, 47–64. Amsterdam: North-Holland.Google Scholar
  134. Struik, D. (Ed.) (1969) A source book in mathematics, 1200–1800. Harvard University Press, Cambridge, MassGoogle Scholar
  135. Sullivan, K. (1976). The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach, American Mathematics Monthly, 83, 370–375. http://www.jstor.org/stable/2318657.
  136. Tait W. (1983) Against intuitionism: Constructive mathematics is part of classical mathematics. Journal of Philosophical Logic 12(2): 173–195CrossRefGoogle Scholar
  137. Tait, W. (2001). Beyond the axioms: The question of objectivity in mathematics. The George Boolos Memorial Symposium, II (Notre Dame, IN, 1998). Philosopical Mathematics (3) 9(1), 21–36Google Scholar
  138. Tall D. (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. Mathematics Gazette 64: 22–49CrossRefGoogle Scholar
  139. Tall D. (1991) The psychology of advanced mathematical thinking. In: Tall D.O. (Ed.) Advanced mathematical thinking, Mathematics Education Library, 11. Kluwer, DordrechtGoogle Scholar
  140. Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus, pp. 1–11 in Transforming Mathematics Education through the use of Dynamic Mathematics, ZDM (june 2009).Google Scholar
  141. Taylor, R. G. (2000). Review of Real numbers, generalizations of the reals, and theories of continua. In P. Ehrlich (Ed.), [see item [45] above]. Modern Logic, 8(1/2), 195–212.Google Scholar
  142. Troelstra, A., & van Dalen, D. (1988). Constructivism in mathematics, vol. I. An introduction. Studies in Logic and the Foundations of Mathematics, 121. Amsterdam: North-Holland.Google Scholar
  143. van der Waerden B.L. (1985) A history of algebra. From al-Khwarizmi to Emmy Noether. Springer, BerlinGoogle Scholar
  144. Veronese, G. (1891). Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare, Lezioni per la Scuola di magistero in Matematica. Padova, Tipografia del Seminario.Google Scholar
  145. Vincenti W., Bloor D. (2003) Boundaries, contingencies and rigor: Thoughts on mathematics prompted by a case study in transonic aerodynamics. Social studies of science 33: 469–507CrossRefGoogle Scholar
  146. Wallis, J. (2004). The arithmetic of infinitesimals. Translated from the Latin and with an introduction by Jaequeline A. Stedall. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.Google Scholar
  147. Weil, A. (1973). Book Review: The mathematical career of Pierre de Fermat. Bulletin in American Mathematical Society, 79(6), 1138–1149 (review of item [94] above).Google Scholar
  148. Weil A. k. (1984) Number theory. An approach through history From Hammurapi to Legendre. Birkhäuser Boston Inc, Boston, MAGoogle Scholar
  149. Wilson, M. L. (1992). Frege: The royal road from geometry. Noûs, 26(2), 149–180 [reprinted in Frege’s philosophy of mathematics, 108–149, Harvard University Press, Cambridge, MA, 1995].Google Scholar
  150. Yablo S. (2005) The myth of the seven. In: Kalderon M. E. (Ed.) Fictionalism in metaphysics. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations