Foundations of Science

, Volume 16, Issue 1, pp 1–20 | Cite as

Agnostic Science. Towards a Philosophy of Data Analysis

  • D. NapoletaniEmail author
  • M. Panza
  • D. C. Struppa


In this paper we will offer a few examples to illustrate the orientation of contemporary research in data analysis and we will investigate the corresponding role of mathematics. We argue that the modus operandi of data analysis is implicitly based on the belief that if we have collected enough and sufficiently diverse data, we will be able to answer most relevant questions concerning the phenomenon itself. This is a methodological paradigm strongly related, but not limited to, biology, and we label it the microarray paradigm. In this new framework, mathematics provides powerful techniques and general ideas which generate new computational tools. But it is missing any explicit isomorphism between a mathematical structure and the phenomenon under consideration. This methodology used in data analysis suggests the possibility of forecasting and analyzing without a structured and general understanding. This is the perspective we propose to call agnostic science, and we argue that, rather than diminishing or flattening the role of mathematics in science, the lack of isomorphisms with phenomena liberates mathematics, paradoxically making more likely the practical use of some of its most sophisticated ideas.


Methods of computational science Philosophy of data analysis Philosophy of science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achinstein P. (1983) The nature of explanation. Oxford University Press, New YorkGoogle Scholar
  2. Alligood K. T., Sauer T., Yorke J. (1996) Chaos. An introduction to dynamical systems. Springer, New YorkGoogle Scholar
  3. Altland A., Simons B. (2006) Condensed matter field theory. Cambridge University Press, CambridgeGoogle Scholar
  4. Baik J., Paek J. (2000) A neural network model for predicting typhoon intensity. Journal of Meteorology Society Japan 78: 857–869Google Scholar
  5. Bailer-Jones D. M., Bailer-Jones C. A. L. (2002) Modeling data: Analogies in neural networks, simulated annealing and genetic algorithms. In: Magnani L. (ed.) Model-based reasoning: Science,technology, values. Kluwer-Academic, Dordrecht, pp 147–165Google Scholar
  6. Baldi P., Hatfield G. W. (2002) DNA microarrays and gene expression: From experiments to data analysis and modeling. Cambridge University Press, Cambridge, New YorkCrossRefGoogle Scholar
  7. Batterman R. (2002) The devil in the details. Oxford University Press, OxfordGoogle Scholar
  8. Batterman R. (2010) On the explanatory role of mathematics in empirical science. British Journal for the Philosophy of Science 61(1): 1–25CrossRefGoogle Scholar
  9. Bonchev D., Rouvray D. H. (1991) Chemical graph theory: Introduction and fundamentals. Abacus Press, New YorkGoogle Scholar
  10. Christini D.J., Stein K.M., Markowitz M.S., Mittal S., Slotwiner D.J., Scheiner M.A., Iwai S., Lerman B.B. (2001) Nonlinear-dynamical arrhythmia control in hyumans. Proceedings of the National Academy of Science 98: 5827–5832CrossRefGoogle Scholar
  11. Cichocki A., Amari S. (2002) Adaptive blind signal and image processing. Wiley, New YorkCrossRefGoogle Scholar
  12. Coifman, R. R., & Maggioni, M. (2008) Geometry, analysis and signal processing on digital data, emergent structures, and knowledge building. SIAM News, 41(10).
  13. De Regt H. W., Dieks D. (2005) A contextual approach to scientific understanding. Synthese 144: 137–170CrossRefGoogle Scholar
  14. Donoho, D. (2000). High-dimensional data analysis. The curses and blessings of dimensionality. 2000. AMS Lecture, Math. Challanges of the 21st Century, 2000. Available at
  15. Freund, Y., & Schapire, R. (1999). A short introduction to boosting. Journal of Japan Society for Artifcial Intelligence, 14(5), 771–780. In Japanese, English translation available at
  16. Friedman M. (1974) Explanation and scientific understanding. The Journal of Philosophy 71: 5–19CrossRefGoogle Scholar
  17. Good I. J. (1983) The philosophy of exploratory data analysis. Philosophy of Science 50(2): 283–295CrossRefGoogle Scholar
  18. Harris, T. (2003). Data models and the acquisition and manipulation of data. Philosophy of Science, 70(5), 1508–1517. Proceedings of the 2002 Biennial Meeting of the Philosophy of Science Association. Part I: Contributed Papers.Google Scholar
  19. Hastie, T., Tibshirami, R., Eisen, M. B., Alizadeh, A., Levy, R., Staudt, L., Chan, W. C., Botstein, D., & Brown, P. (2000). ‘gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. 2000. Available at: Scholar
  20. Hastie T., Tibshirami R., Friedman J. (2001) The elements of statistical learning. Springer, New YorkGoogle Scholar
  21. Humphreys P. (1995) Computational science and scientific method. Minds and Machines 95(5(4)): 499–512Google Scholar
  22. Humphreys P. (2004) Extending ourselves. Oxford University Press, New YorkCrossRefGoogle Scholar
  23. Humphreys P. (2009) The philosophical novelty of computer simulation methods. Synthese 169(3): 615–626CrossRefGoogle Scholar
  24. Kalnay E. (2003) Atmospheric modeling, data assimilation, and predictability. Cambridge University Press, CambridgeGoogle Scholar
  25. Kantz H., Schreiber T. (2003) Nonlinear time series analysis. Cambridge University Press, Cambridge, New YorkCrossRefGoogle Scholar
  26. Kapitaniak T. (1996) Controlling chaos. Academic Press, BostonGoogle Scholar
  27. Kaufman L., Rousseeuw P. J. (2005) Finding groups in data: An introduction to cluster analysis. Wiley-Interscience, New YorkGoogle Scholar
  28. Lee T. W. (1998) Independent component analysis. Theory and applications. Kluwer A.P, BostonGoogle Scholar
  29. Lehnard J. (2009) The great deluge: Simulation modeling and scientific understanding. In: Regt H. W., Leonelli S., Eigner K. (eds) Scientific understanding: Philosophical perspectives. University of Pittsburgh Press, Pittsburgh, pp 169–186Google Scholar
  30. Mallat S. (2008) A wavelet tour of signal processing. Academic Press, San DiegoGoogle Scholar
  31. McComb W. D. (2008) Renormalization methods: A guide for beginners. Oxford University Press, New YorkGoogle Scholar
  32. McCulloch W., Pitts W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7: 115–133CrossRefGoogle Scholar
  33. McShane L. M., Radmacher M. D., Freidlin B., Yu R., Li M., Simon R. (2002) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18: 1462–1469CrossRefGoogle Scholar
  34. Morrison M. (2006) Scientific understanding and mathematical abstraction. Philosophia 34: 337–353CrossRefGoogle Scholar
  35. Mullis K. B., Ferre F., Gibbs R. A. (1994) The polymerase chain reaction. Birkhauser, BostonGoogle Scholar
  36. Nishimori H. (1999) Statistical physics of spin glasses and information procesing. Oxford university press, New YorkGoogle Scholar
  37. Ott E., Grebogi C., Yorke J. A. (1990) Controlling chaos. Physical Review Letters 64: 1196–1199CrossRefGoogle Scholar
  38. Ramsay J. O., Silverman B. W. (1997) Functional data analysis. Springer, New YorkGoogle Scholar
  39. Ramsay J. O., Silverman B. W. (2002) Applied functional data analysis. Springer, New YorkCrossRefGoogle Scholar
  40. Ripley B. D. (1996) Pattern recognition and neural networks. Cambridge University Press, New YorkGoogle Scholar
  41. Salmon W., Kitcher P. (1989) Scientifical explanation, volume XIII of minnesota studies in the philosophy of science. University of Minnesota Press, MinneapolisGoogle Scholar
  42. Sauer T., Yorke J., Casdagli M. (1991) Embedology. Journal of Statistical Physics 65: 579–616CrossRefGoogle Scholar
  43. Scriven M. (1962) Explanations, predictions, and laws. In: Feigl H., Maxwell G. (eds) Scientific explanation, space, and time, volume 3 of minnesota studies in the philosophy of science. University of Minnesota Press, Minneapolis, pp 170–230Google Scholar
  44. Simon R. M., Korn E. L., McShane L. M., Radmacher M. D., Wright G. W., Zhao Y. (2003) Design and analysis of DNA microarray investigations. Springer, New YorkGoogle Scholar
  45. Simpkins F., Kohn E., Espina V., Petricoin A. F. III, Liotta L. A. (2004) Beyond genomics to functional proteomics. Genomics and Protenomics 4(9): S7–S14Google Scholar
  46. So P., Francis J.T., Netoff T.I., Gluckman B.J., Schiff S.J. (1998) Periodic orbits: A new language for neuronal dynamics. Proceedings of the National Academy of Science 74: 2776–2785Google Scholar
  47. Suppes P. (1962) Models of data. In: Nagel E., Suppes P., Taski A. (eds) Logic, methodology and philosophy of science, volume 898 of Lecture Notes in Mathematics, pages 252–261. Stanford: Stanford Univ. Press.Google Scholar
  48. Szlam A. D., Maggioni M., Coifman R. R. (2008) Regularization on graphs with function-adapted diffusion processes. Journal of Machine Learning Research 9: 1711–1739Google Scholar
  49. Takens, F. (1981). Detecting strange attractors in turbolence. volume 898 of Lecture Notes in Mathematics. Berlin, New York: Springer-Verlag.Google Scholar
  50. Toulmin S. (1963) Foresight and understanding. Harper and Row, New York, NYGoogle Scholar
  51. Trottenberg U., Oosterlee C. W., Schuller A. (2000) Multigrid. Academic Press, San DiegoGoogle Scholar
  52. Trout J. D. (2002) Scientific explanation and the sense of understanding. Philosophy of Science 69: 212–233CrossRefGoogle Scholar
  53. Weber E. (1996) Explaining, understanding and scientific theories. Erkenntnis 44: 1–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematical SciencesGeorge Mason UniversityFairfaxUSA
  2. 2.IHPSTCNRS, Univ. Paris 1 and ENS ParisParisFrance
  3. 3.Department of Mathematics and Computer ScienceChapman UniversityOrangeUSA

Personalised recommendations