Skip to main content
Log in

Development (and Evolution) of the Universe

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

I distinguish Nature from the World. I also distinguish development from evolution. Development is progressive change and can be modeled as part of Nature, using a specification hierarchy. I have proposed a ‘canonical developmental trajectory’ of dissipative structures with the stages defined thermodynamically and informationally. I consider some thermodynamic aspects of the Big Bang, leading to a proposal for reviving final cause. This model imposes a ‘hylozooic’ kind of interpretation upon Nature, as all emergent features at higher levels would have been vaguely and episodically present primitively in the lower integrative levels, and were stabilized materially with the developmental emergence of new levels. The specification hierarchy’s form is that of a tree, with its trunk in its lowest level, and so this hierarchy is appropriate for modeling an expanding system like the Universe. It is consistent with this model of differentiation during Big Bang development to view emerging branch tips as having been entrained by multiple finalities because of the top-down integration of the various levels of organization by the higher levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonner J. T. (2006) Why size matters. Princeton University Press, Princeton

    Google Scholar 

  • Brooks D. R., Wiley E. O. (1988) Evolution as entropy: Toward a unified theory of biology (2nd ed.). University of Chicago Press, Chicago

    Google Scholar 

  • Brown, J. H., West, G. B. (eds) (2000) Scaling in biology. Oxford University Press, New York

    Google Scholar 

  • Carnot S. (1824/1960) Reflections on the motive power of fire and on machines fitted to develop that power. In: Mendoza E. (eds) Reflections on the motive power of fire and other papers. Dover, New York, pp 3–22

    Google Scholar 

  • Chaisson E. J. (2001) Cosmic evolution: The rise of complexity in nature. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Damuth J. (1985) Selection among species: A reformulation in terms of natural functional units. Evolution 39: 1132–1146

    Article  Google Scholar 

  • Einstein, A. (1907/1989). On the relativity principle and the conclusions to be drawn from it. In The collected papers of Albert Einstein, Vol. 2: The Swiss Years: Writings, 1900–1909. Princeton University Press, Princeton. (Translated by Anna Beck).

  • Elsasser W. M. (1969) Acausal phenomena in physics and biology: A case for reconstruction. American Scientist 57: 502–516

    Google Scholar 

  • Esposito J. L. (1977) Schelling’s idealism and philosophy of nature. Bucknell University Press, Lewisburg

    Google Scholar 

  • Ewens W. J. (2004) Mathematical population genetics: Theoretical introduction. Springer, New York

    Google Scholar 

  • Goodman, N. (1976). Languages of art: An approach to a theory of symbols. Indianapolis, IN: Hackett.

  • Greenberg, G., Tobach, E. (eds) (1988) Evolution of social behavior and integrative levels. Lawrence Erlbaum, Hillsdale, N.J

    Google Scholar 

  • Holling C. S. (1986) The resilience of terrestrial ecosystems. In: Clark W.C., Munn R.E. (eds) Sustainable development of the biosphere. Cambridge University Press, Cambridge, UK, pp 292–320

    Google Scholar 

  • Lineweaver C. H., Egan C. A. (2008) Life, gravity and the second law of thermodynamics. Physics of Life Reviews 5: 225–242

    Article  Google Scholar 

  • Matthen, M. (1989). The four causes in Aristotle’s embryology. In: R. Kraut & T. Penner (Eds.) Nature, knowledge and virtue. Apeiron: Special Issue 22.4:159–180.

  • Neurath, O., Carnap, R., Morris, C. (eds) (1955–1969) Foundations of the unity of science: Toward an ecyclopedia of unified science. University of Chicago Press, Chicago

    Google Scholar 

  • Nicolis G. (1986) Dynamics of hierarchical systems: An evolutionary approach. Springer, Berlin

    Google Scholar 

  • Odum H. T. (1983) Systems ecology: An introduction pp. 102, 116. Wiley Interscience, New York

    Google Scholar 

  • Patten B. C., Bosserman R. W., Finn J. T., Gale W. G. (1976) Propagation of cause in ecosystems. In: Patten B. C. (eds) Systems analysis and simulation in ecology. Academic Press, New York

    Google Scholar 

  • Peirce C. S. (1905) Issues of pragmatism. The Monist 15: 481–499

    Google Scholar 

  • Peirce, C. S. (1931–1958). Collected papers, Vols. I–VIII. In C. Hartshorne & P. Weiss (Eds.) Harvard University Press, Cambridge, MA

  • Polanyi M. (1968) Life’s irreducible structure. Science 160: 1308–1312

    Article  Google Scholar 

  • Poli R. (1998) Levels. Axiomanthes Nos 1–2: 197–211

    Article  Google Scholar 

  • Popper K. R. (1990) A world of propensities. Thoemmes, Bristol

    Google Scholar 

  • Prigogine I. (1955) Introduction to thermodynamics of irreversible processes. Wiley Interscience, New York

    Google Scholar 

  • Reid R. G. B. (2007) Biological emergences: Evolution by natural experiment. MIT Press, Cambridge, MA

    Google Scholar 

  • Salthe S. N. (1985) Evolving hierarchical systems: Their structure and representation. Columbia University Press, New York

    Google Scholar 

  • Salthe S. N. (1988) Notes toward a formal history of the levels concept. In: Greenberg G., Tobach E. (eds) Evolution of social behavior and integrative levels. L. Erlbaum Associates, Hillside, N.J

    Google Scholar 

  • Salthe S. N. (1989) Self-organization of/in hierarchically structured systems. Systems Research 6: 199–208

    Google Scholar 

  • Salthe S. N. (1993) Development and evolution: Complexity and change in biology. MIT Press, Cambridge, MA

    Google Scholar 

  • Salthe, S. N. (2000). Translation into and out of language. Athanor X, n.s. No. 2,167–177.

  • Salthe S. N. (2002) Summary of the principles of hierarchy theory. General Systems Bulletin 31: 13–17

    Google Scholar 

  • Salthe S. N. (2004) The natural philosophy of ecology: developmental systems ecology. Ecological Complexity 2: 1–19

    Google Scholar 

  • Salthe, S. N. (2005). An approach to causality in organized complexity: the role of management. In K. Richardson (Ed.) Managing the Complex: Philosophy, Theory, Practice. I.A.P./I.S.C.E. Managing the Complex Book Series, Vol. 1 (pp. 81–94).

  • Salthe S. N. (2006a) On Aristotle’s conception of causality. General Systems Bulletin 35: 11

    Google Scholar 

  • Salthe, S. N. (2006b). Two frameworks for complexity generation in biological systems. Evolution of Complexity. ALifeX Proceedings. C. Gershenson & T. Lenaerts (Eds.). Indiana University Press, Bloomington, IN. http://ecco.vub.be/EDO/Salthe.pdf.

  • Salthe, S. N. (2008). The System of Interpretance, Naturalizing Meaning as Finality. Biosemiotics. http://dx.doi.org/10.1007/s12304-008-9023-3.

  • Salthe S. N. (2009) A hierarchical framework for levels of reality: Understanding through representation. Axiomathes 19: 87–95

    Article  Google Scholar 

  • Salthe, S. N., & Fuhrman, G. (2005). The Cosmic Bellows: The Big Bang and the Second Law. Cosmos and History 1: pp. 295–318. http://www.cosmosandhistory.org.

  • Schneider E. D., Kay J. J. (1994) Life as a Manifestation of the Second Law of Thermodynamics. Mathematical and Computer Modelling 19: 25–48

    Article  Google Scholar 

  • Simpson G. G. (1953) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Sims D. W. et al (2008) Scaling laws of marine predator search behavior. Nature 451: 1098–1102

    Article  Google Scholar 

  • Snowdon P. (2008) Knowing how and knowing that: A distinction reconsidered. Proceedings of the Aristotelian Society 104: 1–29

    Google Scholar 

  • Turner J. S. (2000) The extended origanism: The physiology of animal-built structures. Harvard University Press, Cambridge, MA, p 31

    Google Scholar 

  • Turner M. S. (2007) Quarks and the cosmos. Science 315: 59–61

    Article  Google Scholar 

  • Ulanowicz R. E. (1997) Ecology, the ascendent perspective. New Columbia University Press, New York

    Google Scholar 

  • Ulanowicz R. E. (2007) Emergence, naturally!. Zygon 42: 945–969

    Article  Google Scholar 

  • Vernadsky V. I. (1944) Problems of biogeochemistry II. Transactions of the Connecticut Academy of Arts and Sciences 35: 483–517

    Google Scholar 

  • Vernadsky, V. I. (1986). The Biosphere. Synergetic Press, London. (Original work published 1929).

  • von Uexküll J. (1926) Theoretical biology. Harcourt, Brace, London

    Google Scholar 

  • Weber, A. (1908). History of Philosophy. New York: Charles Scribner’s Sons. http://www.uidaho.edu/Mickelsen/texts/Weber%20-%20History/bacon.htm.

  • West G. B., Brown J. H., Enquist B. J. (2001) A general model for ontogenetic growth. Nature 413: 628–631

    Article  Google Scholar 

  • Whitehead A. N. (1929) Process and reality: An essay in cosmology. Macmillan, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley N. Salthe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salthe, S.N. Development (and Evolution) of the Universe. Found Sci 15, 357–367 (2010). https://doi.org/10.1007/s10699-010-9181-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9181-z

Keywords

Navigation