Skip to main content
Log in

Anthropomorphic Quantum Darwinism as an Explanation for Classicality

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

According to Zurek, the emergence of a classical world from a quantum substrate could result from a long selection process that privileges the classical bases according to a principle of optimal information. We investigate the consequences of this principle in a simple case, when the system and the environment are two interacting scalar particles supposedly in a pure state. We show that then the classical regime corresponds to a situation for which the entanglement between the particles (the system and the environment) disappears. We describe in which circumstances this factorisability condition is fulfilled, in the case that the particles interact via position-dependent potentials, and also describe in appendix the tools necessary for understanding our results (entanglement, Bell inequalities and so on).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell J. S. (1965) On the EPR paradox. Physics 1: 195–200

    Google Scholar 

  • Bell J. S. (1987) Speakable and unspeakable in quantum mechanics. University Press, Cambridge

    Google Scholar 

  • Braun, D. (2005). Entanglement from thermal black body radiation (pp. 1–10), quant-ph/0505082.

  • Braunstein S. L., Mann A., Revzen M. (1992) Maximal violation of Bell inequalities for mixed states. Physics Review Letters 68: 3259–3261

    Article  Google Scholar 

  • Broadbent, A., & Methot, A. A. (2005). Entanglement swapping, light cones and elements of reality (pp. 1–9), quant-ph/0511047.

  • Bruss D. (2002) Characterizing entanglement. Journal of Mathematics and Physics 43(9): 4237–4251

    Article  Google Scholar 

  • Ciron M. A., Dahl J. P., Fedorov M., Greenberger D., Schleich W. P. (2002) Huygen’s principle, the free Schrödinger particle and the quantum anti-centrifugal force. Journal of Physics B: Atomic, Molecular, and Optical Physics 35: 191–203

    Article  Google Scholar 

  • Dürr, D., Goldstein, S., Tumulka, R., & Zanghi, N. (2005). To appear in the encyclopedia of philosophy, 2nd edn [edited by D. M. Borchert (Macmillan Reference, (www.math.rutgers.edu/~oldstein/papers/bbt.pdf))].

  • Durt, T. (2000). Localization of quantum systems and special relativity. In Proceedings of the conference, physical interpretations of relativity theory (p. 89). London, September 2000.

  • Durt, T. (2001). Characterization of an entanglement-free evolution (PP. 1–21). quant-ph/0109112.

  • Durt, T. (2004a). Quoted in the New Scientist, March 2004, in the paper “Quantum Entanglement, How the Future can influence the past”, by Michael Brooks, about entanglement and interaction in Quantum Mechanics.

  • Durt T. (2004) Quantum entanglement, interaction, and the classical limit. Zeit fur Naturf 59A: 425–436

    Google Scholar 

  • Durt, T. (2006). Quantum information, entanglement and relationships. Cosmos, 2(1), 21–48 (World Scientific Singapore).

    Google Scholar 

  • Durt T. (2007) Quantum information, a survey. Physicalia Magazine 29(4): 145–160

    Google Scholar 

  • Ehrenfest, P. (1917). In what way does it become manifest in the fundamental laws of physics that space has three dimensions. In Proceedings of Amsterdam academy, Vol. 20, (p. 200–209).

  • Ehrenfest P. (1920) Welche Rolle spielt die Dreidimensionalitat des Raumes in den Grundgesetzen der Physik?. Annual Physics New York 61: 440–449

    Article  Google Scholar 

  • Einstein A., Podolsky B., Rosen N. (1935) Can quantum mechanical description of physical reality be considered complete?. Physics Review 47: 777–780

    Article  Google Scholar 

  • Engel G. S., Calhoun Tessa R., Read E. L., Ahn T.-K., Manal T., Cheng Y.-C., Blankenship R. E., Fleming Graham R. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446: 782–786

    Article  Google Scholar 

  • Faris, W. (1996). Notices of the AMs, November , 1339 (http://www.ams.org/notices/199611/faris.pdf).

  • Gemmer J., Mahler G. (2001) Entanglement and the factorization approximation. European Physics Journal D 17: 385–393

    Article  Google Scholar 

  • Gisin N. (1991) Bell’s inequality holds for all non-product states. Physics Letter A 154(5,6): 201

    Article  Google Scholar 

  • Home D., Selleri F. (1991) Bell’s theorem and the EPR paradox. La Rivista del Nuovo Cimento della Societa Italiana di fisica 14(9): 1–95

    Article  Google Scholar 

  • Jaeger G., Shimony A., Vaidman L. (1995) Two interferometric complementarities. Physics Review A 51: 54–67

    Article  Google Scholar 

  • Janssen, H. (2008). Reconstructing Reality Environment-induced decoherence, the measurement problem, and the emergence of definiteness in quantum mechanics. Master Thesis, Univ. Nijmegen, http://philsci-archive.pitt.edu/archive/00004224/01/scriptie.pdf. A critical assessment

  • Kaslikowski D., Kwek L. C., Englert B.-G., Zukowski M. (2003) Information theoretic approach to single-particle and two-particle interference in multi-path interferometers. Physics Review Letters 91: 037901 (4 pages)

    Google Scholar 

  • Masanes, L., Acin, A., & Gisin, N. (2005). General properties of nonsignaling theories (pp. 1–10), quant-ph/0508016.

  • Masanes, L., Acin, A., & Gisin, N. (2010). From Bell’s theorem to secure quantum key distribution (pp. 1–5), quant-ph/0510094.

  • Nielsen M. A., Chuang I. L. (2000) Quantum computing and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  • Omnès R. (1994) The interpretation of quantum mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Osterloh A., Amico L., Falci G., Fazio R. (2001) Scaling of the entanglement close to quantum phase transitions. Letters to Nature 416: 608–610

    Article  Google Scholar 

  • Paz J. P., Zurek W. H. (1999) Quantum limit of decoherence: Environment induced superselection of energy eigenstates. Physics Review Letters 82: 5181–5185

    Article  Google Scholar 

  • Peres A. (2004) What is actually teleported?. IBM Journal of Research and Development 48(1): 63–68

    Article  Google Scholar 

  • Quack M. (2002) How important is parity violation for molecular and biomolecular chirality?. Angewandte Chemie 41(24): 4618–4630

    Article  Google Scholar 

  • Schrödinger, E. (1935). Discussion of probability relations between separated systems. In Proceedings of Cambridge Philosophy Society, Vol. 31 (p. 555–563). The english translation can also be found in Wheeler and Zurek (1983).

  • Scully M., Englert B.-G., Walther H. (1991) Quantum optical tests of complementarity. Nature 351: 111–116

    Article  Google Scholar 

  • Seevinck M. (2004) Holism, physical theories and quantum mechanics. Studies in History and Philosophy of Modern Physics 35B: 693–712

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 (623–656), http://plan9.belllabs.com/cm/ms/what/shannonday/shannon1948.pdf.

  • Squires E. (1994) The mystery of the quantum world (2nd ed.). Taylor and Francis, New York

    Google Scholar 

  • Tittel W., Brendel J., Zbinden H., Gisin N. (1998) Quantum cryptography using entangled photons in energy-time bell states. Physics Review Letters 81: 3563–3566

    Article  Google Scholar 

  • Tittel, W., Brendel, J., Zbinden, H., & Gisin, N. (2000). Experimental test of relativistic quantum state collapse with moving reference frames (pp. 1–4), quant-ph/0002031.

  • Wheeler, J.A., Zurek, W.H. (eds) (1983) Quantum theory and measurement. Princeton, NJ

    Google Scholar 

  • Wiseman H.M., Eisert J. (2007) Nontrivial quantum effects in biology: A skeptical point of view. In: Abbott D. (eds) Invited contribution to Quantum aspects of life. World Scientific, Singapore, pp 381–402

    Google Scholar 

  • Zurek, W. H. (1981). Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse Physics Review D, 24, 1516–1525

    Article  Google Scholar 

  • Zurek W.H. (1982) Environment-induced superselection rules. Physics Review D 26: 1862–1880

    Article  Google Scholar 

  • Zurek W.H. (1991) Decoherence and the transition from quantum to classical. Physics Today 44(10): 36–44

    Article  Google Scholar 

  • Zurek W.H. (1993) Preferred states, predictability, classicality, and the environment-induced decoherence. Progress Theory Physics 89(2): 281–312

    Article  Google Scholar 

  • Zurek, W. H. (2003). Decoherence and the transition from quantum to classical revisited, http://arxiv.org/pdf/quant-ph/0306072.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Durt.

Additional information

It is even an open question to know whether the non-classical aspects of quantum mechanics play a fundamental role in biological processes at all. It is for instance an open question to know whether or not quantum coherence must be invoked in order to explain intra-cellular processes. Nothing illustrates better the present situation than this quote of Wiseman and Eisert (2007): “When you have excluded the trivial, whatever remains, however, improbable, must be a good topic for a debate”. . ..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durt, T. Anthropomorphic Quantum Darwinism as an Explanation for Classicality. Found Sci 15, 177–197 (2010). https://doi.org/10.1007/s10699-010-9173-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9173-z

Keywords

Navigation