Skip to main content

A Framework Linking Non-Living and Living Systems: Classification of Persistence, Survival and Evolution Transitions

Abstract

We propose a framework for analyzing the development, operation and failure to survive of all things, living, non-living or organized groupings. This framework is a sequence of developments that improve survival capability. Framework processes range from origination of any entity/system, to the development of increased survival capability and development of life-forms and organizations that use intelligence. This work deals with a series of developmental changes that arise from the uncovering of emergent properties. The framework is intended to be general, but we see a potential to apply it to scientific topics such as the exploration of the origin of life or the search for life beyond Earth, and to understand some biological issues in evolution and symbiosis, and also to apply to social systems that do not seem to be operating well, to determine their problems and correct them.

This is a preview of subscription content, access via your institution.

References

  1. Bateson G. (1980) Mind and nature: A necessary unity. Dutton, New York

    Google Scholar 

  2. Boltzmann, L. (1895). Lectures on gas theory. (Dover Reprinted by 1995).

  3. Carnot N.L.S. (1824) Reflections on the motive power of fire. Chez Bachelier Libraire, Paris

    Google Scholar 

  4. Carter B. (1974) Large number coincidences and the anthropic principle. In: Longair M.S.(eds) Confrontation of cosmological theories with observational data. D. Reidel, Boston, pp 291–298

    Google Scholar 

  5. Clark J.B. (1891) Distribution determined by a law of rent. Quarterly Journal of Economics 5: 289–318

    Article  Google Scholar 

  6. Clausius, R. (1850). On the mechanical equivalent of heat. Annalen der Physik, 79, 368–397, 500–524.

    Google Scholar 

  7. Cleland C.E., Chyba C.F. (2002) Defining ‘Life’. Origins of Life and Evolution of the Biosphere 32: 387–393

    Article  Google Scholar 

  8. Coulomb, A. (1785). Premier Mémoire sur l’Electricité et le Magnétisme. Histoire de l’Académie Royale des Sciences, 569–577.

  9. Darwin C. (1859) On the origin of species. John Murray, London

    Google Scholar 

  10. Einstein A. (1905a) On a heuristic viewpoint concerning the production and transformation of light. Annalen der Physik 17: 132–148

    Article  Google Scholar 

  11. Einstein A. (1905b) Does the inertia of a body depend upon its energy content?. Annalen der Physik 18: 639–641

    Article  Google Scholar 

  12. Faraday, M. (1844). Experimental researches in electricity. (Reprinted by Green Lion Press, 2000).

  13. Feynman R. (1998) QED. Princeton University Press, Princeton

    Google Scholar 

  14. Gibbs J.W. (1902) Rational foundations of thermodynamics. Scribner’s Sons, New York

    Google Scholar 

  15. Hobson J.H. (1891) The law of three rents. Quarterly Journal of Economics 5: 263–288

    Article  Google Scholar 

  16. ISO 7498 (Internet pages) (1994). http://www.sigcomm.org/standards/iso_stds/OSI_MODEL/index.html.

  17. James W. (1890) Principles of psychology. Henry Holt, New York

    Google Scholar 

  18. Joule, J. P. (1965). The scientific papers of James Prescott Joule. (Reprinted London: Dawson’s).

  19. Kardashev N.S. (1964) Transmission of information by extraterrestrial civilizations. Soviet Astronomy 8: 217

    Google Scholar 

  20. Keynes J.M. (1930) Theory of money. McMillan, New York

    Google Scholar 

  21. Lavoisier, A. (1789). Elements of chemistry. (Reprinted. New York, NY: Dover Publications Inc., 1965).

  22. Lorenz K. (1937) Biologische Fragestellungen in der Tierpsychologie. Zeitschrift für Tierpsychologie 1: 24–32

    Google Scholar 

  23. Malthus, T. R. (1798). First essay on population. (Reprinted. New York, NY: Agustus Kelley, 1965).

  24. Maxwell J.C. (1865) A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155: 459–512

    Article  Google Scholar 

  25. Mendel G. (1865) Experiments in plant hybridization. Verhandlungen des naturforschenden Vereines in Brünn 4: 3–47

    Google Scholar 

  26. Mendeleev D. (1869) On the relationship of the properties of elements to their atomic weights. Zeitschrift fur Chemie 12: 405–406

    Google Scholar 

  27. Michod R.E., Nedelcu A.M., Roze D. (2003) Cooperation and conflict in the evolution of individuality IV. Conflict mediation and evolvability, with interpretations of the development of Volvox carteri. BioSystems 69: 95–114

    Article  Google Scholar 

  28. Newton, I. (1999). The principia: Mathematical principles of natural philosophy (1687 Trans. I. B. Cohen, & A. Whitman). Berkeley, CA: University of California Press.

  29. Oersted G.S. (1821) Experiments on the effect of a current of electricity on the magnetic needle. Annals of Philosophy XVI: 273–276

    Google Scholar 

  30. Ohm G.S. (1827) Die galvanische Kette, mathematisch bearbeitet. Riemann, Berlin

    Google Scholar 

  31. Pauling, L. (1939). On the nature of the chemical bound. Cornell University Press.

  32. Pavlov I.P. (1927) Conditioned reflexes. Routledge and Kegan Paul, London

    Google Scholar 

  33. Planck, M. (1901). On the law of distribution of energy in the normal spectrum. Annalen der Physik, 4, 553 ff.

  34. Ricardo, D. (1917). Principles of political economy and taxation. (Reprinted Dover 2004).

  35. Scheele, C. W. (1780). Chemical treatise on air and fire. Uppsala & Leipzig.

  36. Schrödinger E. (1944) What is life?. Cambridge University Press, Cambridge

    Google Scholar 

  37. Von Neumann J., Morgenstern O. (1943) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  38. Watson J.D., Crick F.H.C. (1953) A structure for deoxyribose nucleic acid. Nature 171: 737–738

    Article  Google Scholar 

  39. Weaver W., Shannon C.E. (1949) The mathematical theory of communication. University of Illinois, Urbana, IL

    Google Scholar 

  40. Wen, X-G. (2004). Photons and electrons as emergent phenomena. http://arxiv.org/abs/condmat/0407140.

  41. Wheeler J.A. (1963) Geometrodynamics. Academic Press, New York

    Google Scholar 

  42. Woese, C. R., Kandler, O., & Wheelis M. L. (June 1990). Towards a natural system of organisms. Proceedings of the National Academy of Science, 87(12), 4576–4579.

  43. Wöhler F. (1828) Ueber künstliche Bildung des Harnstoffs. Annales des Chimie et des Physique 37: 330

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. J. Woolf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dennis, L., Gray, R.W., Kauffman, L.H. et al. A Framework Linking Non-Living and Living Systems: Classification of Persistence, Survival and Evolution Transitions. Found Sci 14, 217–238 (2009). https://doi.org/10.1007/s10699-008-9154-7

Download citation

Keywords

  • Emergent properties
  • Life-like systems
  • Living systems
  • Survival
  • Thriving