Foundations of Science

, Volume 14, Issue 3, pp 217–238 | Cite as

A Framework Linking Non-Living and Living Systems: Classification of Persistence, Survival and Evolution Transitions

  • L. Dennis
  • R. W. Gray
  • L. H. Kauffman
  • J. Brender McNair
  • N. J. WoolfEmail author


We propose a framework for analyzing the development, operation and failure to survive of all things, living, non-living or organized groupings. This framework is a sequence of developments that improve survival capability. Framework processes range from origination of any entity/system, to the development of increased survival capability and development of life-forms and organizations that use intelligence. This work deals with a series of developmental changes that arise from the uncovering of emergent properties. The framework is intended to be general, but we see a potential to apply it to scientific topics such as the exploration of the origin of life or the search for life beyond Earth, and to understand some biological issues in evolution and symbiosis, and also to apply to social systems that do not seem to be operating well, to determine their problems and correct them.


Emergent properties Life-like systems Living systems Survival Thriving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bateson G. (1980) Mind and nature: A necessary unity. Dutton, New YorkGoogle Scholar
  2. Boltzmann, L. (1895). Lectures on gas theory. (Dover Reprinted by 1995).Google Scholar
  3. Carnot N.L.S. (1824) Reflections on the motive power of fire. Chez Bachelier Libraire, ParisGoogle Scholar
  4. Carter B. (1974) Large number coincidences and the anthropic principle. In: Longair M.S.(eds) Confrontation of cosmological theories with observational data. D. Reidel, Boston, pp 291–298Google Scholar
  5. Clark J.B. (1891) Distribution determined by a law of rent. Quarterly Journal of Economics 5: 289–318CrossRefGoogle Scholar
  6. Clausius, R. (1850). On the mechanical equivalent of heat. Annalen der Physik, 79, 368–397, 500–524.Google Scholar
  7. Cleland C.E., Chyba C.F. (2002) Defining ‘Life’. Origins of Life and Evolution of the Biosphere 32: 387–393CrossRefGoogle Scholar
  8. Coulomb, A. (1785). Premier Mémoire sur l’Electricité et le Magnétisme. Histoire de l’Académie Royale des Sciences, 569–577.Google Scholar
  9. Darwin C. (1859) On the origin of species. John Murray, LondonGoogle Scholar
  10. Einstein A. (1905a) On a heuristic viewpoint concerning the production and transformation of light. Annalen der Physik 17: 132–148CrossRefGoogle Scholar
  11. Einstein A. (1905b) Does the inertia of a body depend upon its energy content?. Annalen der Physik 18: 639–641CrossRefGoogle Scholar
  12. Faraday, M. (1844). Experimental researches in electricity. (Reprinted by Green Lion Press, 2000).Google Scholar
  13. Feynman R. (1998) QED. Princeton University Press, PrincetonGoogle Scholar
  14. Gibbs J.W. (1902) Rational foundations of thermodynamics. Scribner’s Sons, New YorkGoogle Scholar
  15. Hobson J.H. (1891) The law of three rents. Quarterly Journal of Economics 5: 263–288CrossRefGoogle Scholar
  16. James W. (1890) Principles of psychology. Henry Holt, New YorkGoogle Scholar
  17. Joule, J. P. (1965). The scientific papers of James Prescott Joule. (Reprinted London: Dawson’s).Google Scholar
  18. Kardashev N.S. (1964) Transmission of information by extraterrestrial civilizations. Soviet Astronomy 8: 217Google Scholar
  19. Keynes J.M. (1930) Theory of money. McMillan, New YorkGoogle Scholar
  20. Lavoisier, A. (1789). Elements of chemistry. (Reprinted. New York, NY: Dover Publications Inc., 1965).Google Scholar
  21. Lorenz K. (1937) Biologische Fragestellungen in der Tierpsychologie. Zeitschrift für Tierpsychologie 1: 24–32Google Scholar
  22. Malthus, T. R. (1798). First essay on population. (Reprinted. New York, NY: Agustus Kelley, 1965).Google Scholar
  23. Maxwell J.C. (1865) A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155: 459–512CrossRefGoogle Scholar
  24. Mendel G. (1865) Experiments in plant hybridization. Verhandlungen des naturforschenden Vereines in Brünn 4: 3–47Google Scholar
  25. Mendeleev D. (1869) On the relationship of the properties of elements to their atomic weights. Zeitschrift fur Chemie 12: 405–406Google Scholar
  26. Michod R.E., Nedelcu A.M., Roze D. (2003) Cooperation and conflict in the evolution of individuality IV. Conflict mediation and evolvability, with interpretations of the development of Volvox carteri. BioSystems 69: 95–114CrossRefGoogle Scholar
  27. Newton, I. (1999). The principia: Mathematical principles of natural philosophy (1687 Trans. I. B. Cohen, & A. Whitman). Berkeley, CA: University of California Press.Google Scholar
  28. Oersted G.S. (1821) Experiments on the effect of a current of electricity on the magnetic needle. Annals of Philosophy XVI: 273–276Google Scholar
  29. Ohm G.S. (1827) Die galvanische Kette, mathematisch bearbeitet. Riemann, BerlinGoogle Scholar
  30. Pauling, L. (1939). On the nature of the chemical bound. Cornell University Press.Google Scholar
  31. Pavlov I.P. (1927) Conditioned reflexes. Routledge and Kegan Paul, LondonGoogle Scholar
  32. Planck, M. (1901). On the law of distribution of energy in the normal spectrum. Annalen der Physik, 4, 553 ff.Google Scholar
  33. Ricardo, D. (1917). Principles of political economy and taxation. (Reprinted Dover 2004).Google Scholar
  34. Scheele, C. W. (1780). Chemical treatise on air and fire. Uppsala & Leipzig.Google Scholar
  35. Schrödinger E. (1944) What is life?. Cambridge University Press, CambridgeGoogle Scholar
  36. Von Neumann J., Morgenstern O. (1943) Theory of games and economic behavior. Princeton University Press, PrincetonGoogle Scholar
  37. Watson J.D., Crick F.H.C. (1953) A structure for deoxyribose nucleic acid. Nature 171: 737–738CrossRefGoogle Scholar
  38. Weaver W., Shannon C.E. (1949) The mathematical theory of communication. University of Illinois, Urbana, ILGoogle Scholar
  39. Wen, X-G. (2004). Photons and electrons as emergent phenomena.
  40. Wheeler J.A. (1963) Geometrodynamics. Academic Press, New YorkGoogle Scholar
  41. Woese, C. R., Kandler, O., & Wheelis M. L. (June 1990). Towards a natural system of organisms. Proceedings of the National Academy of Science, 87(12), 4576–4579.Google Scholar
  42. Wöhler F. (1828) Ueber künstliche Bildung des Harnstoffs. Annales des Chimie et des Physique 37: 330Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • L. Dennis
    • 1
  • R. W. Gray
    • 2
  • L. H. Kauffman
    • 3
  • J. Brender McNair
    • 4
  • N. J. Woolf
    • 5
    Email author
  1. 1.CentreSA GmbHLuzernSwitzerland
  2. 2.Biophan TechnologiesPittsfordUSA
  3. 3.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Institute of Health Science and TechnologyAalborg UniversityAalborgDenmark
  5. 5.Astronomy DepartmentUniversity of ArizonaTucsonUSA

Personalised recommendations