Skip to main content
Log in

Conceptual Barriers to Progress Within Evolutionary Biology

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello L.C., Wheeler P. (1995) The expensive-tissue hypothesis. Current Anthropology 36: 199–221

    Google Scholar 

  • Amundson R. (2005) The changing role of the embryo in evolutionary thought. Cambridge University Press, London

    Google Scholar 

  • Aoki K. (1986) A stochastic model of gene-culture coevolution suggested by the “culture historical hypothesis” for the evolution of adult lactose absorption in humans. Proceedings of the National Academy of Sciences USA 83: 2929–2933

    Google Scholar 

  • Aoki K., Feldman M.W., Kerr B. (2001) Models of sexual selection on a quantitative genetic trait when preference is acquired by sexual imprinting. Evolution 55(1): 25–32

    Google Scholar 

  • Arthur W. (2004) Biased embryos and evolution. Cambridge University Press, London

    Google Scholar 

  • Balter M. (2005) Are humans still evolving?. Science 309: 234–237

    Google Scholar 

  • Beltman J.B., Haccou P., ten Cate C. (2003) The impact of learning foster species’ song on the evolution of specialist avian brood parasitism. Behavioural Ecology 14(6): 917–923

    Google Scholar 

  • Beltman J.B., Haccou P., ten Cate C. (2004) Learning and colonization of new niches: A first step towards speciation. Evolution 58(1): 35–46

    Google Scholar 

  • Bird A. (2002) DNA methylation patterns and epigenetic memory. Genes and Development 16: 6–21

    Google Scholar 

  • Bongaarts J., Watkins S.C. (2005) Social interactions and contemporary fertility transitions. Population and Development Review 22(4): 639–682

    Google Scholar 

  • Boni M.F., Feldman M.W. (2005) Evolution of antibiotic resistance by human and bacterial niche construction. Evolution 59(3): 477–491

    Google Scholar 

  • Boogert N.J., Paterson D.M., Laland K.N. (2006) The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56: 570–578

    Google Scholar 

  • Borenstein E., Kendal J., Feldman M. (2006) Cultural niche construction in a metapopulation. Theoretical Population Biology 70: 92–104

    Google Scholar 

  • Brandon R., Antonovics J. (1996) The coevolution of organism and environment. In: Brandon R. (eds) Concepts and methods in evolutionary biology. Cambridge University Press, London, pp 161–178

    Google Scholar 

  • Brown J.H. (1995) Organisms and species as complex adaptive systems: Linking the biology of populations with the physics of ecosystems. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Carroll S.B. (2005) Endless forms most beautiful. The new science of Evo Devo and the making of the animal kingdom. Weidenfeld and Nicolson, London

    Google Scholar 

  • Cavalli-Sforza L.L., Feldman M.W. (1981) Cultural transmission and evolution: A quantitative approach. Princeton University Press, Princeton

    Google Scholar 

  • Chase J.M., Leibold M.A. (2003) Ecological niches. Linking classical and contemporary approaches. Chicago University Press, Chicago

    Google Scholar 

  • Crain C.M., Bertness M.D. (2006) Ecosystem engineering across environmental gradients: Implications for conservation and management. BioScience 56(3): 211–218

    Google Scholar 

  • Dawkins R. (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Dawkins R. (1982) The extended phenotype. Freeman, Oxford

    Google Scholar 

  • Dawkins R. (2004) Extended phenotype—but not too extended. A reply to Laland, Turner and Jablonka. Biology and Philosophy 19(3): 377–396

    Google Scholar 

  • Dedeine F., Vavre F., Fleury F., Loppin B., Hochberg M. E., Boulétreau M. (2001) Removing symbiotic Wolbachia specifically inhibits oogenesis in a parasitic wasp. Proceedings National Academy of Sciences 98(11): 6247–6252

    Google Scholar 

  • Donohue K. (2005) Niche construction through phonological plasticity: Life history dynamics and ecological consequences. New Phytologist 166: 83–92

    Google Scholar 

  • Durham W.H. (1991) Coevolution: Genes, culture and human diversity. Stanford University Press, Stanford, CA

    Google Scholar 

  • Dussourd D.E., Ubik K., Harvis C., Resch J., Meinwald J., Eisner T. (1988) Biparental defence endowment of eggs with acquired plant alkaloid in the moth. Utetheisa ornatrix. Proceedings National Academy of Sciences USA 85: 5992–5996

    Google Scholar 

  • Estes J.A. (1995) Top-level carnivores and ecosystem effects: Questions and approaches. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman and Hall, New York, pp 151–158

    Google Scholar 

  • Feldman M.W. (2008) Dissent with modification: Cultural evolution and social niche construction. In: Brown M. (eds) Explaining culture scientifically. University of Washington Press, Seattle

    Google Scholar 

  • Feldman M.W., Cavalli-Sforza L.L. (1976) Cultural and biological evolutionary processes, selection for a trait under complex transmission. Theoretical Population Biology 9: 238–259

    Google Scholar 

  • Feldman M.W., Cavalli-Sforza L.L. (1989) On the theory of evolution under genetic and cultural transmission with application to the lactose absorption problem. In: Feldman M.W. (eds) Mathematical evolutionary theory. Princeton University Press, Princeton

    Google Scholar 

  • Gilbert S.F. (2003) The morphogenesis of evolutionary developmental biology. International Journal of Developmental Biology 47: 467–477

    Google Scholar 

  • Gilbert S.F. (2006) The generation of novelty: The province of developmental biology. Biological Theory 1: 209–212

    Google Scholar 

  • Gilbert S.F., Opitz J., Raff R.A. (1996) Resynthesizing evolutionary and developmental biology. Developmental Biology 173: 357–372

    Google Scholar 

  • Godfrey-Smith P. (1996) Complexity and the function of mind in nature. Cambridge University Press, London

    Google Scholar 

  • Goldstone J.V. et al (2006) The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Developmental Biology 300: 366–384

    Google Scholar 

  • Gould S.J., Lewontin R.C. (1979) The Spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings Royal Society London B 205: 581–598

    Article  Google Scholar 

  • Griffiths P.E., Gray R.D. (2001) Darwinism and Developmental Systems. In: Oyama S., Griffiths P.E., Gray R.D. (eds) Cycles of contingency: Developmental systems and evolution. MIT Press, Cambridge, pp 195–217

    Google Scholar 

  • Griffiths, P. E. & Gray, R. D. (2004). The developmental systems perspective. Organism-environment systems as units of development and evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes. OUP.

  • Gurney W.S.C., Lawton J.H. (1996) The population dynamics of ecosystem engineers. Oikos 76: 273–283

    Google Scholar 

  • Hamburger V. (1980) Embryology and the modern synthesis in evolutionary theory. In: Mayr E., Provine W. (eds) The evolutionary synthesis: Perspectives on the Unification of Biology. Cambridge University Press, New York, pp 97–112

    Google Scholar 

  • Hansell M.H. (1993) The ecological impact of animal nests and burrows. Functional Ecology 7: 5–12

    Google Scholar 

  • Heyes C.M., Galef B.G. (1996) Social learning in animals: The roots of culture. Academic Press, London

    Google Scholar 

  • Holden C., Mace R. (1997) Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology 69: 605–628

    Google Scholar 

  • Holt R.D. (1995) Linking species and ecosystems: Where’s Darwin?. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881–884

    Google Scholar 

  • Hui C., Li Z.Z., Yue D.X. (2004) Metapopulation dynamics and distribution, and environmental heterogeneity induced by niche construction. Ecological Modelling 177: 107–1189

    Google Scholar 

  • Hui C., Yu D. (2005) Niche construction and polymorphism maintenance in metapopulations. Ecological Research 20: 115–119

    Google Scholar 

  • Ihara Y., Feldman M.W. (2004) Cultural niche construction and the evolution of small family size. Theoretical Population Biology 65: 105–111

    Google Scholar 

  • Jablonka E., Lamb M.J. (2005) Evolution in four dimensions. MIT Press, Cambridge, Mass

    Google Scholar 

  • Jones C.G., Lawton J.H. . (1995) Linking species and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Jones C.G., Lawton J.H., Shachak M. (1994) Organisms as ecosystem engineers. Oikos 69: 373–386

    Google Scholar 

  • Jones C.J., Lawton J.H., Shachak M. (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946–1957

    Article  Google Scholar 

  • Kendal, J. R., Ihara, Y., & Feldman, M. W. (2005). Cultural niche construction with application to fertility control: A model for education and social transmission of contraceptive use. Morrison Institute Working Paper Series, 102.

  • Kerr B., Schwilk D.W., Bergman A., Feldman M.W. (1999) Rekindling an old flame: A haploid model for the evolution and impact of flammability in resprouting plants. Evolutionary Ecology Research 1: 807–833

    Google Scholar 

  • Keys D.N., Lewis D.L., Selegue J.E., Pearson B.J., Goodrich L.V., Johnson R.L., Gates J., Scott M.P., Carroll S.B. (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283: 532–534

    Google Scholar 

  • Kirkpatrick M., Dugatkin L.A. (1994) Sexual selection and the evolutionary effects of copying mate choice. Behavioural Ecology and Sociobiology 34: 443–449

    Google Scholar 

  • Kirkpatrick M., Lande R. (1989) The evolution of maternal characters. Evolution 43: 485–503

    Google Scholar 

  • Laland K.N. (1994) On the evolutionary consequences of sexual imprinting. Evolution 48(2): 477–489

    Google Scholar 

  • Laland K N., Odling-Smee F.J., Feldman M.W. (1996) On the evolutionary consequences of niche construction. Journal of Evolutionary Biology 9: 293–316

    Google Scholar 

  • Laland K.N., Odling-Smee F.J., Feldman M.W. (1999) evolutionary consequences of niche construction and their implications for ecology. Proceedings of the National Academy of Sciences USA 96: 10242–10247

    Google Scholar 

  • Laland K.N., Odling-Smee F.J., Feldman M.W. (2001) Cultural niche construction and human evolution. Journal of Evolutions Biology 14: 22–33

    Google Scholar 

  • Laland K.N., Odling-Smee J., Feldman M.W. (2000) Niche construction, biological evolution, and cultural change. Behavioral and Brain Sciences 23: 131–175

    Google Scholar 

  • Laland K.N., Odling-Smee F.J., Gilbert S.F. (2008) Evo-devo and niche construction: Building bridges. Journal of Experimental Zoology, Part B 310: 549–566

    Google Scholar 

  • Laland K.N., Sterelny K. (2006) Seven reasons (not) to neglect niche construction. Evolution 60: 1751–1762

    Google Scholar 

  • Lewens T. (2003) Prospects for an evolutionary policy. Philosophy 78(306): 495–514

    Google Scholar 

  • Lewontin R.C. (1982) Organism and environment. In: Plotkin H.C. (eds) Learning, development and culture. Wiley, New York

    Google Scholar 

  • Lewontin R.C. (1983) Gene, organism, and environment. In: Bendall D.S. (eds) Evolution from molecules to men. Cambridge University Press, London

    Google Scholar 

  • Lewontin R. (2000) The triple helix: Gene, organism, and environment. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Likens G.E. (1995) Forward. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman& Hall, New York

    Google Scholar 

  • Maynard Smith J. (1982) Evolution and the theory of games. Cambridge University Press, London

    Google Scholar 

  • Mayr E. (1961) Cause and effect in biology. Science 134: 1501–1506

    Google Scholar 

  • Mayr E. (1984) The triumph of the evolutionary synthesis. Times Literary Supplement Nov 2: 1261–1262

    Google Scholar 

  • Mousseau T.A., Fox C.W. (1998) Maternal effects as adaptations. Oxford University Press, Oxford

    Google Scholar 

  • Odling-Smee F.J. (1988) Niche constructing phenotypes. In: Plotkin H.C. (eds) The role of behavior in evolution. MIT Press, Cambridge, pp 73–132

    Google Scholar 

  • Odling-Smee J. (2006) Chapter 3: How niche construction contributes to human gene-culture coevolution. In: Wells J.C.K., Strickland S., Laland K. (eds) Social information transmission and human biology. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Odling-Smee F.J., Laland K.N., Feldman M.W. (1996) Niche construction. The American Naturalist 147: 641–648

    Google Scholar 

  • Odling-Smee F.J., Laland K.N., Feldman M.W. (2003) Niche construction. The neglected process in evolution. Monographs in Population Biology,37. Princeton University Press, Princeton

    Google Scholar 

  • O’Neill R.V., DeAngelis D.L., Waide J.B., Allen T.F.H. (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Oyama S. (1985) The ontogeny of information. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Oyama S., Griffiths P.E., Gray R.D. (2001) Cycles of contingency: Developmental systems and evolution. MIT Press, Cambridge

    Google Scholar 

  • Pinker, S. (1994). The language instinct: The new science of language and mind. Allen Lane, Penguin, St. Ives.

  • Raff R.A. (2000) Evo-devo: the evolution of a new discipline. Natural Review of Genetics 1: 74–79

    Google Scholar 

  • Reiners W.R. (1986) Complementary models for ecosystems. American Naturalist 127: 59–73

    Google Scholar 

  • Rice S.H. (2004) Evolutionary theory. Mathematical and conceptual foundations. Sinauer Sanderland, Mass

    Google Scholar 

  • Richardson M. (1999) Vertebrate evolution: The developmental origins of adult variation. BioEssays 21: 604–613

    Google Scholar 

  • Richerson P.J., Boyd R. (2005) Not by genes alone. Chicago University Press, Chicago

    Google Scholar 

  • Robertson D.S. (1991) Feedback theory and Darwinian evolution. Journal of Theoretical Biology 152: 469–484

    Google Scholar 

  • Schwilk D.W., Ackerly D.D. (2001) Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94: 326–336

    Google Scholar 

  • Silver M., Di Paolo E. (2006) Spatial effects favour the evolution of niche construction. Theoretical Population Biology 20: 387–400

    Google Scholar 

  • Sterelny K. (2001) Niche construction, developmental systems, and the extended replicator. In: Oyama S., Griffiths P.E., Gray R.D. (eds) Cycles of contingency: Developmental systems and evolution. MIT Press, Cambridge, Mass

    Google Scholar 

  • Sterelny, K. (2003). Thought in a hostile world. The evolution of human cognition. Blackwell.

  • Sterelny K. (2005) Made by each other: Organisms and their environment. Biology and Philosophy 20(1): 21–36

    Google Scholar 

  • Stinchcombe J.R., Schmitt J. (2006) Ecosystem engineers as selective agents: The effects of leaf litter on emergence time and early growth in Impatiens capensis. Ecology Letters 9: 258–270

    Google Scholar 

  • Tebbich S., Taborsky M., Febl B., Blomqvist D. (2001) Do woodpecker finches acquire tool-use by social learning?. Proceedings of the Royal Society of London B 268: 2189–2193

    Google Scholar 

  • ten Cate C. (2000) How learning mechanisms might affect evolutionary processes. Trends in Ecology Evolution 15: 179–181

    Google Scholar 

  • ten Cate C., Bateson P.P.G. (1988) Sexual selection: The evolution of conspicuous characteristics in birds by means of imprinting. Evolution 42: 1355–1358

    Google Scholar 

  • Tishkoff S.A., Reed F.A., Ranciaro A., Voight B.F., Babbitt C.C. et al (2006) Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics 39: 31–40

    Google Scholar 

  • Tomasello M., Carpenter M., Call J., Behne T., Moll H. (2005) Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences 28: 675–735

    Google Scholar 

  • Ulijaszek S.J., Strickland S.S. (1993) Nutritional anthropology. Prospects and perspectives. Smith-Gordon, London

    Google Scholar 

  • Via S., Gomulkiewics R., de Jong G., Scheiner S.M., Schlichting C.D., van Tienderen P.H. (1995) Adaptive phenotypic plasticity: Consensus and controversy. TREE 10: 212–217

    Google Scholar 

  • Vitousek P.M. (1986) Biological invasions and ecosystem properties: Can species make a difference. In: Mooney H.A., Drake J.A. (eds) Ecology of biolgocal invasions of North America and Hawaii. Springer-Verlag, New York

    Google Scholar 

  • Waddington, C. H. (1959). Evolutionary adaptation. In S. Tax (Ed.), The evolution of life. Evolution after Darwin (Vol. 1, pp. 381–402).

  • Waddington, C. H. (1969). Paradigm for an evolutionary process. In C. H. Waddington (Ed.), Towards a theoretical biology (pp. 106–128). Edinburgh University Press.

  • West-Eberhard M.J. (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Williams G.C. (1992) Gaia, nature worship, and biocentric fallacies. Quarterly Review of Biology 67: 479–486

    Google Scholar 

  • Wolf J.B., Brodie E.D. III, Cheverud J.M., Moore A.J., Wade M.J. (1998) Evolutionary consequences of indirect genetic effects. Trends in Ecology and Evolution 13: 64–69

    Google Scholar 

  • Wolf, J.B., Brodie, E.D., Wade, M.J. (eds) (2000) Epistasis and the evolutionary process. Oxford University Press, Oxford

    Google Scholar 

  • Wright J.P., Jones C.G. (2006) The concept of organisms as ecosystem engineers ten years on: Progress, limitations and challenges. Bioscience 56(3): 203–210

    Google Scholar 

  • Xu J., Gordon J.I. (2003) Honor thy symbionts. Proceedings National Academy of Sciences 100(18): 10452–10459

    Google Scholar 

  • Zentall T.R., Galef B.G. Jr. (1988) Social learning: Psychological and biological perspectives. Erlbaum, Hillsdale, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin N. Laland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laland, K.N., Odling-Smee, J., Feldman, M.W. et al. Conceptual Barriers to Progress Within Evolutionary Biology. Found Sci 14, 195–216 (2009). https://doi.org/10.1007/s10699-008-9153-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-008-9153-8

Keywords

Navigation