Foundations of Science

, Volume 9, Issue 4, pp 387–404 | Cite as

Quantum Mechanics and Computation

  • Bart D’hoogheEmail author
  • Jaroslaw Pykacz


In quantum computation non classical features such as superposition states and entanglement are used to solve problems in new ways, impossible on classical digital computers.We illustrate by Deutsch algorithm how a quantum computer can use superposition states to outperform any classical computer. We comment on the view of a quantum computer as a massive parallel computer and recall Amdahl’s law for a classical parallel computer. We argue that the view on quantum computation as a massive parallel computation disregards the presence of entanglement in a general quantum computation and the non classical way in which parallel results are combined to obtain the final output.


quantum computation parallel computers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amdahl, G.M.: 1967, Validity of the Single-Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS Conference Proceedings, Spring Joint Computing Conference (Atlantic City, N.J., Apr. 18–20). Reston, VA: AFIPS Press, 30, 483–485.Google Scholar
  2. Arvind,  2001Quantum Entanglement and Quantum Computational AlgorithmsPramana Jr. of Physics56357365available as e-print: quant-ph/0012116Google Scholar
  3. Arvind and N. Mukunda: 2000, A Two-qubit Algorithm Involving Quantum Entanglement. e-print: quant-ph/0006069.Google Scholar
  4. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R. 1995Conditional Quantum Dynamics and Logic GatesPhys. Rev. Lett7440834086e-print: quantph/9503017PubMedGoogle Scholar
  5. Bernstein, E. and U. Vazirani: 1993, Quantum Complexity Theory. Proc. 25th ACM Symp. on Theory of Computating, 11-20.Google Scholar
  6. Bremner, M.J., Dawson, C.M., Dodd, J.L., Gilchrist, A., Harrow, A.W., Mortimer, D., Nielsen, M.A., Osborne, T.J. 2002A Practical Scheme for Quantum Computation with Any Two-qubit Entangling GatePhys. Rev. Lett89247902e-print: quant-ph/0207072PubMedGoogle Scholar
  7. Calderbank, A.R., Shor, P.W. 1996Good Quantum Error-Correcting Codes ExistPhys. Rev. A5410981106PubMedGoogle Scholar
  8. Deutsch, D. 1985Quantum Theory, the Church-Turing Principle, and the Universal Quantum ComputerProc. Roy. Soc. LondonA40097Google Scholar
  9. Deutsch, D. 1986Three Connections between Everett’s Interpretation and ExperimentPenrose, R.Isham, C.J. eds. Quantum Concepts in Space and TimeClarendon PressOxford215225Google Scholar
  10. Deutsch, D., Jozsa, R. 1992Rapid Solutions of Problems by Quantum ComputationProc. Roy. Soc. LondA439553558Google Scholar
  11. Dieks, D. 1982Communication by EPR DevicesPhys. LettA92271Google Scholar
  12. DiVincenzo, D.P. 1995Two-bit Gates are Universal for Quantum ComputationPhys. RevA5110151022Google Scholar
  13. Dodd, J.L., M.A. Nielsen, M.J. Bremner and R.T. Thew: 2001, Universal Quantum Computation and Simulation Using Any Entangling Hamiltonian and Local Unitaries. e-print: quant-ph/0106064.Google Scholar
  14. Feynman, R. 1982Simulating Physics with ComputersInt. J. Theor. Phys21467488MathSciNetGoogle Scholar
  15. Feynman, R. 1986Quantum Mechanical ComputersFound. Phys16507Google Scholar
  16. Grover, L.K.: 1996, A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the 28th Annual ACM Symposium on Computing, 212.Google Scholar
  17. Jozsa, R. and N. Linden: 2002, On the Role of Entanglement in Quantum Computational Speed-up. e-print: quant-ph/0201143.Google Scholar
  18. Nielsen, M.A., Chuang, I.L. 2000Quantum Computation and Quantum InformationUniversity PressCambridgeGoogle Scholar
  19. Rivest, R.L., Shamir, A., Adleman, L.M. 1978A Method for Obtaining Digital Signatures and Public-Key CryptosystemsCommunications of the ACM 212120126Google Scholar
  20. Shor, P.W. 1994Algorithms for quantum Computation, Discrete Logarithms and FactoringProc. 35th Annual symposium on Foundations of Computer Science. IEEE Computer Society PressLos Alamitos, CA124Google Scholar
  21. Simon, D. 1994On the Power of Quantum Computation. In FOCS’94,116-123Journal version available at SIAM J Comp., 19972614741483Google Scholar
  22. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L. 2001Experimental Realization of Shor’s Quantum Factoring Algorithm Using Nuclear Magnetic ResonanceNature414883887PubMedGoogle Scholar
  23. Wootters, W.K., Zurek, W.H. 1982A Single Quantum Cannot be ClonedNature299982983Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departement WiskundeVrije Universiteit BrusselBrusselBelgium
  2. 2.Instytut MatematykiUniwersytet GdańskiGdańskPoland

Personalised recommendations