Skip to main content
Log in

Research of chemical elements and chemical bonds from the view of complex network

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Though complex networks have been widely applied in the research of chemistry, there is hardly any introduction about the establishment of networks using chemical bonds. In this paper, we consider chemical elements as a system linked by chemical bonds and create the undirected chemical bond network by abstracting nodes from elements and undirected edges from bonds. Connectivity, heterogeneity, small world and disassortativity of this network show the macro structural rationality of this system. The degree and k-order neighbors of an element, which represent the micro topology of this network, can be used to measure its chemical reactivity and detect how many kinds of compounds it can form. The similarity between two elements is measured by the Jaccard index and the VOS mapping technique, results of which are similar to well-known similarities between elements shown by the periodic table. The establishment and topological analysis of this network provide another way to understand and study elements and bonds, and more chemical properties of elements and bonds can be studied by complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, J.J., Chen, Z.C.: Handbook of Synthesis of Inorganic Compounds, vol. 2. Beijing University of Technology Press, Beijing (1983). (in Chinese)

    Google Scholar 

  • Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  Google Scholar 

  • Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–U15 (2004)

    Article  Google Scholar 

  • Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281(1), 69–77 (2000)

    Article  Google Scholar 

  • Barabási, A.L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(3–4), 590–614 (2002)

    Article  Google Scholar 

  • Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)

    Article  Google Scholar 

  • Biggs, N., Lloyd, E.K., Wilson, R.J.: Graph Theory, 1736–1936. Oxford University Press, New York (1999)

    Google Scholar 

  • Cao, H.M., Bao, W.C., An, J.J.: Handbook of Synthesis of Inorganic Compounds, vol. 1. Beijing University of Technology Press, Beijing (1983). (in Chinese)

    Google Scholar 

  • Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, New York (2016)

    Google Scholar 

  • Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301(5634), 827–829 (2003)

    Article  Google Scholar 

  • Eck, N.J.V., Waltman, L.: Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010a)

    Article  Google Scholar 

  • Eck, N.J.V., Waltman, L.: Vosviewer. (2010b). http://www.vosviewer.com/. Accessed 30 June 2017

  • Eck, N.J.V., Waltman, L.: Text mining and visualization using vosviewer. 7(3), 50–54 (2011). arXiv:1109.2058 [cs.DL]

  • Estrada, E.: The complex networks of earth minerals and chemical elements. MATCH Commun. Math. Comput. Chem. 59(3), 605–624 (2008)

    Google Scholar 

  • Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. Rev. Sec. Phys. Lett. 529(2), 199–264 (2012)

    Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  • Leal, W., Restrepo, G., Bernal, A.: A network study of chemical elements: from binary compounds to chemical trends. MATCH Commun. Math. Comput. Chem. 68(2), 417–442 (2012)

    Google Scholar 

  • Li, M.L.: Handbook of Elements of Chemical Reactions. Chemical Industry Press, Beijing (2008). (in Chinese)

    Google Scholar 

  • Liu, H.K., Zhou, T.: Empirical study of Chinese city airline network. Acta Phys. Sin. 56(1), 106–112 (2007)

    Google Scholar 

  • Mao, G.Y., Zhang, N.: A multilevel simplification algorithm for computing the average shortest-path length of scale-free complex network. J. Appl. Math. 2014(4), 1–6 (2014)

    Google Scholar 

  • Mendeleev, D.I.: The periodic law of the chemical elements. J. Chem. Soc. 55, 634–656 (1889)

    Article  Google Scholar 

  • Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98(2), 404–409 (2001)

    Article  Google Scholar 

  • Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  • Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  Google Scholar 

  • Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences). Cambridge University Press, New York (2011)

    Google Scholar 

  • Ostrovsky, V.N.: What and how physics contributes to understanding the periodic law. Found. Chem. 3(2), 145–182 (2001)

    Article  Google Scholar 

  • Restrepo, G.: Building classes of similar chemical elements from binary compounds and their stoichiometries. In: Benvenuto, M.A., Williamson, T. (eds.) Elements Old and New: Discoveries, Developments, Challenges, and Environmental Implications. ACS Symposium Series, pp. 95–110. American Chemical Society, Washington (2017)

    Chapter  Google Scholar 

  • Rouvray, D.H., King, R.B.: The Mathematics of the Periodic Table. Nova Science Publishers, New York (2006)

    Google Scholar 

  • Scerri, E.: The Periodic Table: Its Story and Its Significance. Oxford University Press, New York (2007)

    Google Scholar 

  • Schummer, J.: The chemical core of chemistry I: a conceptual approach. Hyle Int. J. Philos. Chem. 4(2), 129–162 (1998)

    Google Scholar 

  • Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences: Chemistry Database [DB/OL]. (1978–2016). http://www.organchem.csdb.cn. Accessed 30 June 2017. (in Chinese)

  • Sneath, P.H.A.: Numerical classification of the chemical elements and its relation to the periodic system. Found. Chem. 2(3), 237–263 (2000)

    Article  Google Scholar 

  • Solé, R.V., Munteanu, A.: The large-scale organization of chemical reaction networks in astrophysics. Europhys. Lett. 68(2), 170–176 (2004)

    Article  Google Scholar 

  • Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  • Tatem, A.J.: The worldwide airline network and the dispersal of exotic species: 2007–2010. Ecography 32(1), 94–102 (2009)

    Article  Google Scholar 

  • Uribe, E.A., Daza, M.C., Restrepo, G.: Chemotopological study of the fourth period monohydrides. WSEAS Trans. Inf. Sci. Appl. 2, 1085–1090 (2005)

    Google Scholar 

  • Wang, X.F., Li, X., Chen, G.R.: Network Science: An Introduction. Higher Education Press, Beijing (2012). (in Chinese)

    Google Scholar 

  • Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  • Winter, M.: Webelements. (1993). http://www.webelements.com/. Accessed 30 June 2017

  • Zaremotlagh, S., Hezarkhani, A., Sadeghi, M.: Detecting homogenous clusters using whole-rock chemical compositions and ree patterns: a graph-based geochemical approach. J. Geochem. Explor. 170, 94–106 (2016)

    Article  Google Scholar 

  • Zhang, N.: Complex network demonstration—China education network. J. Syst. Eng. 21(4), 337–340 (2006). (in Chinese)

    Google Scholar 

  • Zhang, X.Y.: Practical Chemistry Handbook. National Defense Industry Press, Beijing (2011). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors would like to give thanks to Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, for providing the chemistry database freely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Mao, G. & Zhang, N. Research of chemical elements and chemical bonds from the view of complex network. Found Chem 21, 193–206 (2019). https://doi.org/10.1007/s10698-018-9318-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-018-9318-7

Keywords

Navigation