Foundations of Chemistry

, Volume 19, Issue 2, pp 157–179 | Cite as

The fifth chemical revolution: 1973–1999

Article

Abstract

A new chronology is introduced to address the history of chemistry, with educational purposes, particularly for the end of the twentieth century and here identified as the fifth chemical revolution. Each revolution are considered in terms of the Kuhnian notion of ‘exemplar,’ rather than ‘paradigm.’ This approach enables the incorporation of instruments, as well as concepts and the rise of new subdisciplines into the revolutionary process and provides a more adequate representation of such periods of development and consolidation. The fifth revolution developed from 1973 to 1999 and is characterized by a deep transformation in the very heart of chemistry. That is to say, the size and type of objects (substances), the way in which they must be done and the time in which they are transformed. In one way or another, chemistry’ limits had been set out.

Keywords

History of chemistry Chemical revolutions Chemistry education Exemplars Instruments and subdisciplines 

Notes

Acknowledgements

To DGAPA-UNAM (México), Marcelo Giordan and Rosaria Justi (Brasil), Agustí Nieto and Monstserrat Recasens (Catalunya) and Helena Ghibaudi and Luigi Cerruti (Italy) for their support, ideas and camaraderie.

References

  1. ACS (consulted 9th March 2016)Google Scholar
  2. Agar, J.: Science in the Twentieth Century and Beyond. Polity Press, Cambridge (2012)Google Scholar
  3. Aikenhead, G.S.: Changes need to succeed where we previously failed. In: Proceedings from Globalization of Science Education: International Conference on Science Education, Seoul (1997)Google Scholar
  4. An, H.J., Huang, J.H., Lü, M., Li, X.L., Lü, J.H., Li, H.K., Zhang, Y., Li, M.Q., Hu, J.: Singe-base resolution and long-coverage sequencing based on single molecule nanomanipulation. Nanotechnology 18, 225101 (2007)CrossRefGoogle Scholar
  5. Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, New York (1998)Google Scholar
  6. Anastas, P.T., Williamson, T.C. (eds.): Green Chemistry: Design Chemistry for the Environment, vol. 626. ACS Symposium Series. American Chemical Society, Washington (1996)Google Scholar
  7. Arndt, U.W.: Instrumentation in X-ray crystallography: past, present and future. Notes Rec. R. Soc. Lond. 55, 457–472 (2001)CrossRefGoogle Scholar
  8. Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. Oxford University Press, Oxford (2006)Google Scholar
  9. Bachelard, G.: La formación del espíritu científico. Siglo XXI, México (1979)Google Scholar
  10. Baird, D., Shew, A.: Probing the history of scanning tunneling microscopy. In: Baird, D., Nordmann, A., Schummer, J. (eds.) Discovering the Nanoscale. IOS Press, Amsterdam (2004)Google Scholar
  11. Bensaude-Vincent, B.: Textbooks on the map of science studies. Sci. Educ. 15, 667–670 (2006)CrossRefGoogle Scholar
  12. Bensaude-Vincent, B., Simon, J.: Chemistry—The Impure Science. Imperial College Press, London (2008)CrossRefGoogle Scholar
  13. Bernal, J.D.: Science in History. MIT Press, Cambridge (1971)Google Scholar
  14. Boon, M.: The scientific use of technological instruments. In: Hansson, S.O. (ed.) The Role of Technology in Science: Philosophical Perspectives. Springer, Berlin (2015). doi: 10.1007/978-94-017-9762-7_4 Google Scholar
  15. Bud, R., Warner, D.J.: Instruments of Science. An Historical Encyclopedia. The Science Museum, London and The National Museum of American History, Smithsonian Institution, New York & London, pp. 213–214 (1998)Google Scholar
  16. Cerruti, L.: Bella e potente. La chimica dagli inizi del Novecento ai giorni nostril. Editori Riuniti University Press, Rome (2016)Google Scholar
  17. Chamizo, J.A.: La imagen pública de la química. Educ. Química 22, 320–331 (2011)Google Scholar
  18. Chamizo, J.A.: Technochemistry: one of the chemist’ way of knowing. Found. Chem. 15, 157–170 (2013a)CrossRefGoogle Scholar
  19. Chamizo, J.A.: About the chemical experiment. In: Llored, J.P. (ed.) The Philosophy of Chemistry—Practices, Methodologies, and Concepts. Cambridge Scholars, Cambridge (2013b)Google Scholar
  20. Chamizo, J.A.: A new definition of models and modeling in chemistry’ teaching. Sci. Educ. 22, 1613–1632 (2013c)CrossRefGoogle Scholar
  21. Chamizo, J.A.: The role of instruments in three chemical’ revolutions. Sci. Educ. 23, 955–982 (2014)CrossRefGoogle Scholar
  22. Chamizo, J.A.: How chemistry teachers, using history of chemistry could teach chemistry. In: Jari, L., Juuti, K., Lampiselkä, J., Uitto, A., Hahl, K. (eds.) Science Education Research: Engaging Learners for a Sustainable Future. ESERA, Helsinki (2016)Google Scholar
  23. Chamizo, J.A., Castillo, D., y Pacheco, I.: La Naturaleza de la Química. Educ. Química 23, 298–304 (2012)Google Scholar
  24. Chang, H.: Inventing Temperature—Measurement and Scientific Progress. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  25. Chang, H.: Is Water H2O? Evidence, Realism and Pluralism. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  26. Chen, X.: Thomas Kuhn’s latest notion of incommensurability. J. Gen. Philos. Sci. 28, 257–273 (1997)CrossRefGoogle Scholar
  27. Chen, J.: Introducing to Scanning Tunneling Microsocopy. Oxford University Press, Oxford (2008)Google Scholar
  28. Chiang, S.: Scanning tunneling microscopy imaging of small adsorbed molecules on metal surfaces in an ultrahigh vacuum environment. Chem. Rev. 97, 1083–1096 (1997)CrossRefGoogle Scholar
  29. Clark, J.H.: Green chemistry: challenges and opportunities. Green Chem. 1, 1–8 (1999)CrossRefGoogle Scholar
  30. Clark, J.H.: Green chemistry—today (and tomorrow). Green Chem. 8, 17–21 (2006)CrossRefGoogle Scholar
  31. Coates, G.E., Green, M.H.L., Powell, P., y Wade, K.: Principios de Química Organometálica. Reverté, Barcelona (1975)Google Scholar
  32. Cohen, I.B.: Revolution in Science. Harvard University Press, Cambridge (1985)Google Scholar
  33. Collins, T.J.: Introducing green chemistry in teaching and research. J. Chem. Educ. 72, 965–966 (1995)CrossRefGoogle Scholar
  34. Collman, J.P., Hegedus, L.S.: Principles and Applications of Organometallic Metal Chemistry. Oxford University Press, Oxford (1980)Google Scholar
  35. Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993)CrossRefGoogle Scholar
  36. Duschl, R.A.: Research on the history and philosophy of science. In: Gable, D., Bunce, D. (eds.) Handbook of Research on Science Teaching and Learning. MacMillan, New York (1994)Google Scholar
  37. Duschl, R.A., Osborne, C.: Supporting and promoting argumentation discourse in science education. Stud. Sci. Educ. 38, 39–72 (2002)CrossRefGoogle Scholar
  38. Dyson, F.J.: The Sun, the Genome, the Internet, Tools of Scientific Revolutions. Oxford University Press, New York (1999)Google Scholar
  39. Elschenbroich, C., Salzer, A.: Organometallics—A Concise Introduction. VCH, Weinheim (1992)Google Scholar
  40. Erduran, S., Scerri, E.: The nature of chemical knowledge and chemical education. In: Gilbert, J.K., et al. (eds.) Chemical Education: Towards Research-Based Practice. Kluwer, Dordrecht (2002)Google Scholar
  41. Ewers, B.W., Schuckman, A.E., Batteas, J.D.: Why did the electron cross the road? A scanning tunneling microscopy (STM) study of molecular conductance for the physical chemistry lab. J. Chem. Educ. 91, 283–290 (2014)CrossRefGoogle Scholar
  42. Fensham, P.J.: Science and technology. In: Jackson, P.W. (ed.) Handbook of Research on Curriculum. Macmillan, New York (1992)Google Scholar
  43. Galison, P.: Image and Logic. University of Chicago Press, Chicago (1977)Google Scholar
  44. Gilbert, J.K.: On the nature of “context” in chemical education. Int. J. Sci. Educ. 28, 957–976 (2006)CrossRefGoogle Scholar
  45. Good, R.J.: Why are chemist “turned off” by philosophy of science? Found. Chem. 1, 65–95 (1999)CrossRefGoogle Scholar
  46. Griffith, J.E., Kochanski, G.P.: Scanning tunneling micrsocopy. Annu. Rev. Mater. Sci. 20, 219–244 (1990)CrossRefGoogle Scholar
  47. Gutting, G.: Paradigms and Revolutions; Applications and Appraisals of Thomas Kuhn’s Philosophy of Science. Notre Dame University Press, Notre Dame (1980)Google Scholar
  48. Gutting, G.: Paradigms, revolutions, and technology. In: Laudan, R. (ed.) The Nature of Technological Knowledge. Are Models of Scientific Change Relevant? Dordrecht, Boston (1984)Google Scholar
  49. Hacking, I.: Representing and Intervening. Cambrige University Press, Cambridge (1983)CrossRefGoogle Scholar
  50. Hermanan, E.: Chromatography (Journal of Chromatography Library—Volume 69A), 6th edn. Elsevier, Amsterdam (2004)Google Scholar
  51. Hodson, D.: Nature of science in the science curriculum: origin, development, implications and shifting emphases. In: Matthews, M. (ed.) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht (2014)Google Scholar
  52. Hoffmann, R.: Introduction. In: Hall, N. (ed.) The New Chemistry. Cambridge University Press, Cambridge (2000)Google Scholar
  53. Hoffmann, R.: What might philosophy of science look like if chemists built it? Synthese 155, 321–336 (2007)CrossRefGoogle Scholar
  54. Holmes, F.L., Levere, T.H. (eds.): Instruments and Experimentation in the History of Chemistry. MIT Press, Cambridge (2000)Google Scholar
  55. Hoyningen-Huene, P.: Thomas Kuhn and the chemical revolution. Found. Chem. 10, 101–115 (2008)CrossRefGoogle Scholar
  56. Jensen, W.: One chemical revolution or three? J. Chem. Educ. 75, 961–969 (1998)CrossRefGoogle Scholar
  57. Kidwai, M., Mohan, R.: Green chemistry: an innovative technology. Found. Chem. 7, 269–287 (2005)CrossRefGoogle Scholar
  58. Kindi, V., Arabatzis, T.: Kuhn’s The Structure of Scientific Revolutions Revisited. Routledge, New York (2012)Google Scholar
  59. Klein, U.: Objects of inquiry in classical chemistry: material substances. Found. Chem. 14, 7–23 (2012)CrossRefGoogle Scholar
  60. Kuhn, T.: The Structure of Scientific Revolutions. The University of Chicago Press, Chicago (1970)Google Scholar
  61. Kuhn, T.: Response to commentaries. In: Asquith, P., Nickles, T. (eds.) PSA 1982 Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, pp. 712–716. Philosophy of Science Association, East Lansing (1983)Google Scholar
  62. Kuhn T.: The Trouble with the Historical Philosophy of Science, Robert and Maurine Rothschild Distinguished Lecture, An Occasional Publication of the Department of History, Harvard University (1992)Google Scholar
  63. Kuhn, T.: Afterwords. In: Horwich, P. (ed.) World Changes. MIT Press, Cambridge (1993)Google Scholar
  64. Lakatos, I., Musgrave, A.: Criticism and the growth of knowledge. In: Proceedings of the International Colloquium in the Philosophy of Science, London 1965 (Vol. 4), reprinted with corrections. Cambridge University Press, Cambridge (1970)Google Scholar
  65. Lancaster, M.: Green Chemistry—An introductory Text. Royal Society of Chemistry, Cambridge (2002)Google Scholar
  66. Laudan, L.: Progress and Its Problems: Toward a Theory of Scientific Growth. University of California Press, Berkeley (1977)Google Scholar
  67. Laudan, R. (ed.): The Nature of Technological Knowledge. Are Models of Scientific Change Relevant? Dordrecht, Boston (1984)Google Scholar
  68. Law, J.: The development of specialities in science: the case of X-ray protein crystallography. Sci. Stud. 3, 275–303 (1973)CrossRefGoogle Scholar
  69. Lazlo, P.: On the self-image of chemists, 1950–2000. Hyle Int. J. Philos. Chem. 12, 99–130 (2006)Google Scholar
  70. Lederman, N.G.: Nature of science: past, present and future. In: Abell, S.K., Lederman, N.G. (eds.) Handbook of Research on Science Education. Lawrence Erlbaum Associates, Mahwah (2007)Google Scholar
  71. Lehn, J.-M.: Supramolecular Chemistry, Concepts and Perspectives. VCH-Wiley, Weinheim (1995)CrossRefGoogle Scholar
  72. Lehn, J.-M., Ball, P.: Supramolecular chemistry. In: Hall, N. (ed.) The New Chemistry. Cambridge University Press, Cambridge (2000)Google Scholar
  73. Li-Jun, W.: Fabricating and controlling molecular self-organization at solid surfaces: studies by scanning tunneling microscopy. Acc. Chem. Res. 39, 334–342 (2006)CrossRefGoogle Scholar
  74. Linthorst, J.A.: An overview: origins and development of green chemistry. Found. Chem. 12, 55–68 (2010)CrossRefGoogle Scholar
  75. Llored, J.P., Sarrade, S.: Connecting the philosophy of chemistry, green chemistry, and moral philosophy. Found. Chem. 18, 125–152 (2016)CrossRefGoogle Scholar
  76. Lovelock, J.E.: The electron capture detector. Theory and practice. J. Chromatogr. A 99, 3–12 (1974)CrossRefGoogle Scholar
  77. Lovelock, J.E.: Tales of a reluctant instrument Marker. In: Sievers, R. (ed.) Selective Detectors, Chemical Analysis Series, vol. 131. Wiley, New York (1995)Google Scholar
  78. Lovelock, J.: Travels with an electron capture detector. Resurgence 187, 6–12 (1998)Google Scholar
  79. Lovelock, J.E.: Homeage to Gaia. Oxford University Press, Oxford (2002)Google Scholar
  80. Lukerhart, C.M.: Fundamental Transition Metal Organometallic Chemistry. Wiley, New York (1985)Google Scholar
  81. Manz, J., Wötse, L. (eds.): Femtosecond Chemistry. VCH, Weinheim (1995)Google Scholar
  82. Marcum, J.A.: From paradigm to disciplinary matrix and exemplars. In: Kindi, V., Arabatzis, T. (eds.) Kuhn’s the Structure of Scientific Revolutions Revisited. Routledge, New York (2012)Google Scholar
  83. Marcum, J.A.: Thomas Kuhn’s Revolutions. Bloomsbury, London (2015)Google Scholar
  84. Marques, C.A., Machado, A.S.C.: Environmental Sustainability: implications and limitations to green chemistry. Found. Chem. 16, 125–147 (2014)CrossRefGoogle Scholar
  85. Mason, T.J. (ed.): Advances in Sonochemistry, vol. 1. JAI Press, London (1990)Google Scholar
  86. Mason, T.J. (ed.): Advances in Sonochemistry, vol. 2. JAI Press, London (1991)Google Scholar
  87. Mason, T.J. (ed.): Advances in Sonochemistry, vol. 3. JAI Press, London (1993)Google Scholar
  88. Mason, T.J. (ed.): Advances in Sonochemistry, vol. 4. JAI Press, London (1996)Google Scholar
  89. Mason, T.J. (ed.): Advances in Sonochemistry, vol. 5. JAI Press, London (1999)Google Scholar
  90. Mason, T.J. (ed.): Advances in Sonochemistry, vol. 6. JAI Press, London (2001)Google Scholar
  91. Matlack, A.S.: Introduction to Green Chemistry. Marcel Dekker, New York (2001)Google Scholar
  92. Matthews, M.R.: Science Teaching: The Role of History and Philosophy of Science. Routledge, London (1994)Google Scholar
  93. Matthews, M.: Changing the focus: from nature of science (NOS) to features of science (FOS). In: Khine, M.S. (ed.) Advances in Nature of Science Research, Concepts and Methodologies. Springer, Dordrecht (2012)Google Scholar
  94. McComas, W.F.: The principal elements of the nature of science: dispelling the myths. In: McComas, W.F. (ed.) The Nature of Science in Science Education. Kluwer, Dordrecht (1998)Google Scholar
  95. McEvoy, J.G.: The Historiography of the Chemical Revolution: Patterns of Interpretation in the History of Science. Pickering and Chatto, London (2010)Google Scholar
  96. Meyers, R.A. (ed.): Encyclopedia of Analytical Chemistry: Applications Theory and Instrumentation. Wiley, Chichester (2000)Google Scholar
  97. Morris, P.J.T.: ‘Parts per trillion is a Fairy Tale’: the development of the electron capture detector and its impact on the monitoring of DDT. In: Morris, P.J.T. (ed.) From Classical to Modern Chemistry. The Instrumental Revolution. RSC-Science Museum-CHF, London (2002a)Google Scholar
  98. Morris, P.J.T. (ed.): From Classical to Modern Chemistry. The Instrumental Revolution. RSC-Science Museum-CHF, London (2002b)Google Scholar
  99. Morris, P.J.T.: The Matter Factory. A History of the Chemistry Laboratory. Reaktion Books, London (2016)Google Scholar
  100. Novak, J.: A Theory of Education. Cornell University Press, Ithaca (1977)Google Scholar
  101. Ojlobistin, O.: La tercera química (Third chemistry). Siglo XX, México (1971)Google Scholar
  102. Ozone Secretariat: http://ozone.unep.org/en/about-secretariat, consulted 7th March 2016 (2016)
  103. Ozin, G.A., Arsenault, A.C., Cademartiri, L.: Nanochemistry. A Chemical Approach to Nanomaterials. RSC, London (2009)Google Scholar
  104. Pickstone, J.V.: Ways of Knowing. Manchester University Press, Manchester (2000)Google Scholar
  105. Pitt, J.C.: Philosophy, engineering, and the sciences. In: van de Poel, I., Goldberg, D. (eds.) Philosophy and Engineering. Springer, Dordrecht (2010)Google Scholar
  106. Pons, M. (ed.): NMR in Supramolecular Chemistry. Springer, Dordrecht (1999)Google Scholar
  107. Porter, G.: Flash photolysis into the femtosecond—a race against time. In: Manz, J., Wötse, L. (eds.) Femtosecond Chemistry. VCH, Weinheim (1995)Google Scholar
  108. Price, G.J. (ed.): Current Trends in Sonochemistry. RSC, London (1992)Google Scholar
  109. Rabkin, Y.: Uses of instruments in chemistry. In: Mauskopf, S.H. (ed.) Chemical Sciences in the Modern World. University of Pennsylvania Press, Philadelphia (1993)Google Scholar
  110. Reinhardt, C.: A lead user of instruments in science. John D. Roberts and the adaptation of nuclear magnetic resonance to organic chemistry, 1955–1975. Isis 97, 205–236 (2006a)CrossRefGoogle Scholar
  111. Reinhardt, C.: Shifting and Rearranging. Physical Methods and the Transformation of Modern Chemistry. Science History Publications, Sagamore Beach (2006b)Google Scholar
  112. Remacle, F., Levine, R.D.: An electronic time scale in chemistry. PNAS 103, 6793-8, May 2 (2008)Google Scholar
  113. Rocke, A.: The quiet revolution of the 1850s: social and empirical sources of scientific theory. In: Mauskopf, S.H. (ed.) Chemical Sciences in the Modern World. University of Pennsylvania Press, Philadelphia (1993)Google Scholar
  114. Rouse, J.: Kuhn and scientific practices. Division I Faculty Publication. Paper 17. http://wesscholar.wesley.edu/div1facpubs/17. (1998)
  115. Rowland F.S.: Nobel Lecture in Chemistry. http://nobelprize.org, consulted 11th February 2016 (1995)
  116. Schummer, J.: Substances versus reactions. HYLE Int. J. Philos. Chem. 10, 3–4 (2004)Google Scholar
  117. Schummer, J.: The philosophy of chemistry. From infancy towards maturity. In: Baird, D., Scerri, E.R., McIntyre, L.C. (eds.) Philosophy of Chemistry. Synthesis of a New Discipline. Springer, Dordrecht (2006)Google Scholar
  118. Schwab, J.J.: The teaching of science as enquiry. In: Schwab, J.J., Brandwein, P.F. (eds.) The Teaching of Science. Harvard University Press, Cambridge (1962)Google Scholar
  119. Schweber, S.: Physics, community and the crisis in physical theory. Phys. Today 46(November), 34–40 (1993)CrossRefGoogle Scholar
  120. Shapin, S.: The Scientific Revolution. Chicago University Press, Chicago (1996)CrossRefGoogle Scholar
  121. Sjöström, J.: The discourse of chemistry (and beyond). HYLE An Int. J. Philos. Chem. 13, 83–97 (2007)Google Scholar
  122. Söderqvist, T. (ed.): The Historiography of Contemporary Science and Technology. Harwood Academic Publishers, Amsterdam (1997)Google Scholar
  123. Soler, L., Wieber, F., Allamer-Raffin, C., Gangloff, J.-L., Dufour, C., Trizio, E.: Calibration—a conceptual framework applied to scientific practices which investigate natural phenomena by means of standardized instruments. J. Gen. Philos. Sci. 44, 263–317 (2013)CrossRefGoogle Scholar
  124. Steed, J.W., Atwood, J.L.: Supramolecular Chemistry. Wiley, New York (2000)Google Scholar
  125. Suslick, K.S. (ed.): Ultrasound. Its chemical, Physical and Biological Effects. VCH, Wienheim (1988)Google Scholar
  126. Talanquer, V.: School chemistry: the need for transgression. Sci. Educ. 22, 1757–1773 (2013)CrossRefGoogle Scholar
  127. Toulmin, S.: Human Understanding. Princeton University Press, Princeton (1972)Google Scholar
  128. Van Aalsvoort, J.: Logical positivism as a tool to analyse the problem of chemistry’s lack of relevance in secondary school chemical education. Int. J. Sci. Educ. 26, 1151–1168 (2004)CrossRefGoogle Scholar
  129. Van Berkel, B., de Vos, W., Pilot, A.: Normal science education and its dangers. Sci. Educ. 9, 123–159 (2000)CrossRefGoogle Scholar
  130. Von Bayer, H.C.: Taming the Atom—The Emergence of the Visible Microworld. Penguin Books, London (1994)Google Scholar
  131. Weininger, S.J.: Butlerov’s vision. The timeless, the transient, and the representation of chemical structure. In: Bhushan, N., Rosenfeld, S. (eds.) Of Minds and Molecules, pp. 143–161. Oxford University Press, New York (2000)Google Scholar
  132. Wiesendanger, R., Güntherodt, H.-J. (eds.): Scanning Tunneling Microscopy III. Theory of STM and Related Scanning Probe Methods. Springer, Berlin (1993)Google Scholar
  133. Williamson, A.W.: Chemical Gazette, 9, 334. Reprinted. In: Benfey, O.T. (ed.) Classics in the Theory of Chemical Combination, pp. 69–71. Dover, New York (1851)Google Scholar
  134. Wineland, D.J., Ekstrom, P., Dehelmet, H.: Monoelectron oscillator. Phys. Rev. Lett. 31, 1279 (1973)CrossRefGoogle Scholar
  135. Zewail, A.: Femtochemistry—concepts and applications. In: Manz, J., Wötse, L. (eds.) Femtosecond Chemistry. VCH, Weinheim (1995)Google Scholar
  136. Zewail, A.: Freezing atoms in motion. Principles of femtochemistry and demostration by laser stroboscopy. J. Chem. Educ. 78, 737–751 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations