Foundations of Chemistry

, Volume 19, Issue 1, pp 43–59 | Cite as

The relationship between chemistry and physics from the perspective of Bohmian mechanics

  • Sebastian Fortin
  • Olimpia Lombardi
  • Juan Camilo Martínez GonzálezEmail author


Although during the last decades the philosophy of chemistry has greatly extended its thematic scope, the main difficulties appear in the attempt to link the chemical description of atoms and molecules and the description supplied by quantum mechanics. The aim of this paper is to analyze how the difficulties that threaten the continuous conceptual link between molecular chemistry and quantum mechanics can be overcome or, at least, moderated from the perspective of BM. With this purpose, in “The quantum-mechanical challenges” section the foundational incompatibility between chemical and SQM descriptions will be briefly recalled. “Bohmian mechanics” section will be devoted to explain the main features of BM. In “Empirical equivalence and underdetermination” section, the consequences of the empirical equivalence between SQM and BM will be discussed. Finally, in the Conclusion, we will stress the scope of the obtained conclusions and the philosophical difficulties that still remain even after adopting BM for foundational purposes.


Chemical descriptions Molecular chemistry Quantum mechanics Bohmian mechanics 



This article was made possible through the support of Grant 57919 from the John Templeton Foundation and Grant PICT-2014-2812 from the National Agency of Scientific and Technological Promotion of Argentina.


  1. Ardenghi, J., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)CrossRefGoogle Scholar
  2. Amann, A.: Must a molecule have a shape? S. Afr. J. Chem. 45, 29–38 (1992)Google Scholar
  3. Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2010)Google Scholar
  4. Berlin, Y., Burin, A., Goldanskii, V.: The Hund paradox and stabilization of molecular chiral states. Zeitschrift für Physik D 37, 333–339 (1996)CrossRefGoogle Scholar
  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 166–179 (1952)CrossRefGoogle Scholar
  6. Bohm, D.: Proof that probability density approaches |Ψ|2 in causal interpretation of the quantum theory. Phys. Rev. 89, 458–466 (1953)CrossRefGoogle Scholar
  7. Brion, C., Cooper, G., Zheng, Y., Litvinyuk, L., McCarthy, I.: Imaging of orbital electron densities by electron momentum spectrsocopy—a chemical interpretation of the binary (e, 2e) reaction. Chem. Phys. 70, 13–30 (2001)CrossRefGoogle Scholar
  8. Chang, H.: Reductionism and the relation between chemistry and physics. In: Arabatzis, T., Renn, J., Simoes, A. (eds.) Relocating the History of Science: Essays in Honor of Kostas Gavroglu. Springer, New York (2015)Google Scholar
  9. Cushing, J.: Quantum Mechanics. Historical Contingency and the Copenhagen Hegemony. The University of Chicago Press, Chicago (1994)Google Scholar
  10. Daintith, J.: Oxford Dictionary of Chemistry. Oxford University Press, NewYork (2004)Google Scholar
  11. Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: On the quantum probability flux through surfaces. J. Stat. Phys. 88, 967–977 (1997)CrossRefGoogle Scholar
  12. Duhem, P. (1914). La Théorie Physique: Son Objet et sa Structure. Paris: Marcel Riviera & Cie. English translation by P. Wiener (1954). The Aim and Structure of Physical Theory. Princeton: Princeton University PressGoogle Scholar
  13. Dürr, D., Goldstein, S., Teufel, S., Zanghì, N.: Scattering theory from microscopic first principles. Phys. A 279, 416–431 (2000)CrossRefGoogle Scholar
  14. Dürr, D., Goldstein, S., Zanghì, N.: Quantum chaos, classical randomness, and bohmian mechanics. J. Stat. Phys. 68, 259–270 (1992)CrossRefGoogle Scholar
  15. Fortin, S., Lombardi, O., Martínez González, J.C.: Isomerism and decoherence. Found. Chem. 18, 225–240 (2016)CrossRefGoogle Scholar
  16. French, S., Krause, D.: Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  17. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison Wesley, San Francisco (2002)Google Scholar
  18. Goldstein, S. (2016). Bohmian mechanics. In: E. Zalta (ed.) The Stanford Encyclopedia of Philosophy (Fall 2016 Ed.),
  19. Grosso, B., Cooper, V., Pine, P., Hashibon, A., Yaish, Y., Adler, J.: Visualization of electronic density. Comput. Phys. Commun. 195, 1–13 (2015)CrossRefGoogle Scholar
  20. Heisenberg, W.: The development of the interpretation of the quantum theory. In: Pauli, W. (ed.) Niels Bohr and the Development of Physics. Pergamon, London (1955)Google Scholar
  21. Hendry, R.F.: Models and approximations in quantum chemistry. In: Shanks, N. (ed.) Idealization in Contemporary Physics. Amsterdam-Atlanta, Rodopi (1998)Google Scholar
  22. Hendry, R.F.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)CrossRefGoogle Scholar
  23. Hendry, R.F.: Two conceptions of the chemical bond. Philos. Sci. 75, 909–920 (2008)CrossRefGoogle Scholar
  24. Hendry, R.F.: Ontological reduction and molecular structure. Stud. Hist. Philos Mod. Phys. 41, 183–191 (2010)CrossRefGoogle Scholar
  25. Hettema, H.: Reducing Chemistry to Physics. Limits, Models, Consecuences. University of Groningen, Groningen (2012)Google Scholar
  26. Holland, P.: Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  27. Hund, F.: Zur Deutung der Molekelspektren. III. Zeitschrift für Physik 43, 805–826 (1927)CrossRefGoogle Scholar
  28. Itatani, J., Levesque, J., Zeidler, D., Niikura, H., Pépin, H., Kieffer, J., Corkum, P., Villeneuve, D.: Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)CrossRefGoogle Scholar
  29. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)Google Scholar
  30. Labarca, M., Lombardi, O.: Why orbitals do not exist? Found. Chem. 12, 149–157 (2010)CrossRefGoogle Scholar
  31. Landau, L.D., Lifshitz, E.M.: Mechanics. Elsevier, Amsterdam (1975)Google Scholar
  32. Leavens, C.: The ‘tunneling-time problem’ for electrons. In: Cushing, J., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal (Boston Studies in the Philosophy of Science, Volume 184). Kluwer Academic Publishers, Boston (1996)Google Scholar
  33. Leggett, A.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys.: Condens. Matter 14, R415–R451 (2002)Google Scholar
  34. Litvinyuk, I., Zheng, Y., Brion, C.: Valence shell orbital imaging in adamantane by electron momentum spectroscopy and quantum chemical calculations. Chem. Phys. 253, 41–50 (2000)CrossRefGoogle Scholar
  35. Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)CrossRefGoogle Scholar
  36. Lombardi, O., Labarca, M.: The ontological autonomy of the chemical world. Found. Chem. 7, 125–148 (2005)CrossRefGoogle Scholar
  37. Mulder, P.: On the alleged non-existence of orbitals. Stud. Hist. Philos Mod. Phys. 41, 178–182 (2010)CrossRefGoogle Scholar
  38. Mulder, P.: Are orbitals observable? Hyle-Int. J. Philos. Chem. 17, 24–35 (2011)Google Scholar
  39. Nelson, P.: How do electrons get across nodes? J. Chem. Educ. 67, 643–647 (1990)CrossRefGoogle Scholar
  40. Ney, A., Albert, D. (eds.): The Wave Function. Oxford University Press, Oxford (2013)Google Scholar
  41. Pascual, J., Gómez-Herrero, J., Rogero, C., Baró, A., Sánchez-Portal, D., Artacho, E., Ordejón, P., Soler, J.: Seeing molecular orbitals. Chem. Phys. Lett. 321, 78–82 (2000)CrossRefGoogle Scholar
  42. Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)CrossRefGoogle Scholar
  43. Primas, H.: Hierarchic quantum descriptions and their associated ontologies. In: Laurikainen, K.V., Montonen, C., Sunnarborg, K. (eds.) Symposium on the Foundations of Modern Physics 1994. Editions Frontières, Gif-sur-Yvette (1994)Google Scholar
  44. Primas, H.: Emergence in exact natural sciences. Acta Polytec. Scand. 91, 83–98 (1998)Google Scholar
  45. Quine, W. (1951). Two dogmas of empiricism. Reprinted in From a Logical Point of View, 2nd ed. Cambridge: Harvard University PressGoogle Scholar
  46. Scerri, E.: The failure of reduction and how to resist disunity of the sciences in the context of chemical education. Sci. Educ. 9, 405–425 (2000)CrossRefGoogle Scholar
  47. Scerri, E.: The recently claimed observation of atomic orbitals and some related philosophical issues. Philos. Sci. 68, S76–S88 (2001)CrossRefGoogle Scholar
  48. Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)CrossRefGoogle Scholar
  49. Woolley, R.G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)CrossRefGoogle Scholar
  50. Woolley, R.G.: Is there a quantum definition of a molecule? J. Math. Chem. 23, 3–12 (1998)CrossRefGoogle Scholar
  51. Woolley, R.G., Sutcliffe, B.T.: Molecular structure and the Born-Oppenheimer approximation. Chem. Phys. Lett. 45, 393–398 (1977)CrossRefGoogle Scholar
  52. Wyatt, R.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)Google Scholar
  53. Zuo, J., Kim, M., O’Keefe, M., Spence, J.: Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O. Nature 401, 49–52 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sebastian Fortin
    • 1
  • Olimpia Lombardi
    • 1
  • Juan Camilo Martínez González
    • 1
    Email author
  1. 1.Conicet–Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations