Foundations of Chemistry

, Volume 19, Issue 2, pp 139–155 | Cite as

On a quest of reverse translation

Article

Abstract

Explaining the emergence of life is perhaps central and the most challenging question in modern science. Within this area of research, the emergence and evolution of the genetic code is supposed to be a critical transition in the evolution of modern organisms. The canonical genetic code is one of the most dominant aspects of life on this planet, and thus studying its origin is critical to understanding the evolution of life, including life’s emergence. In this sense it is possible to view the ribosome as a digital-to-analogue information converter. Why the translation apparatus evolved, is one of the enduring mysteries of molecular biology. Assuming the hypothesis that during the emergence of life evolution had to first involve autocatalytic systems, which only subsequently acquired the capacity of genetic heredity, in the present article we discuss some aspects and causes of the possible emergence of digital, discrete information arising from analogue information realized in the intra- and inter-molecular interactions throughout molecular evolution. How such reverse translation was achieved at a molecular level is still unclear. The results of such debates and investigations might shift current biological paradigms and might also have a momentous significance for modern philosophy in understanding our place in the universe.

Keywords

Origin of life Chemical evolution Complexity Cytochromes P450 Genetic code Reverse translation 

Notes

Acknowledgments

We would like to sincerely thank everyone who directly or indirectly contributed to the creation of this work. In particular, we would like to thank Patrick Beckett and Michael J. Russell for critical reading of the manuscript and making useful suggestions. We would also like to thank Günther Witzany for providing us with some clues on reverse transcription. We also appreciate Aljaž Bolta’s help in the form of reading the manuscript and assisting in the figures preparation.

Conflict of interest

The authors declare no competing financial interest.

References

  1. Adami, C.: What is complexity? BioEssays 24(12), 1085–1094 (2002)CrossRefGoogle Scholar
  2. Adami, C.: Information-theoretic considerations concerning the origin of life. Orig. Life Evol. Biosph. (2015). doi: 10.1007/s11084-015-9439-0 Google Scholar
  3. Annila, A., Baverstock, K.: Genes without prominence: a reappraisal of the foundations of biology. J. R. Soc. Interface 11, 20131017 (2014). doi: 10.1098/rsif.2013.1017 CrossRefGoogle Scholar
  4. Annila, A., Kolehmainen, E.: On the divide between animate and inanimate. J. Syst. Chem. 6, 2 (2015). doi: 10.1186/s13322-015-0008-8 CrossRefGoogle Scholar
  5. Annila, A., Kuismanen, E.: Natural hierarchy emerges from energy dispersal. BioSystems 95, 227–233 (2009)CrossRefGoogle Scholar
  6. Baverstock, K., Rönkkö, M.: Epigenetic regulation of the mammalian cell. PLoS One 3, e2290 (2008). doi: 10.1371/journal.pone.0002290 CrossRefGoogle Scholar
  7. Baverstock, K.: Life as physics and chemistry: a system view of biology. Prog. Biophys. Mol. Biol. 111, 108–115 (2013). doi: 10.1016/j.pbiomolbio.2012.09.002 CrossRefGoogle Scholar
  8. Baymann, F., Lebrun, E., Brugna, M., Schoepp-Cothenet, B., Guidici-Oritconi, M.T., Nitschke, W.: The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Phil. Trans. R. Soc. Lond. B 358, 267–274 (2003). doi: 10.1098/rstb.2002.1184 CrossRefGoogle Scholar
  9. Bowman, J.C., Hud, N.V., Williams, L.D.: The ribosome challenge to the RNA world. J. Mol. Evol. (2015). doi: 10.1007/s00239-015-9669-9 Google Scholar
  10. Brack, A.: From interstellar amino acids to prebiotic catalytic peptides: a review. Chem. Biodivers. 4, 665–679 (2007)CrossRefGoogle Scholar
  11. Cafferty, B.J., Fialho, D.M., Khanam, J., Krishnamurthy, R., Hud, N.V.: Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat. Commun. 7, 11328 (2016). doi: 10.1038/ncomms11328 CrossRefGoogle Scholar
  12. Chen, I.A., Nowak, M.A.: From prelife to life: how chemical kinetics become evolutionary dynamics. Acc. Chem. Res. 45(12), 2088–2096 (2012)CrossRefGoogle Scholar
  13. Chiarabelli, C, Stano, P. and Luisi, P.L. Chemical synthetic biology. Frontiers in Microbiology 4 (Article 285), 1–7 (2013)Google Scholar
  14. Copley, S.D., Smith, E., Morowitz, H.J.: The origin of the RNA world: co-evolution of genes and metabolism. Bioorg. Chem. 35, 430–443 (2007)CrossRefGoogle Scholar
  15. Cronin, L., Walker, S.I.: Beyond prebiotic chemistry. What dynamic network properties allow the emergence of life? Science 352(6290), 1174–1175 (2016)CrossRefGoogle Scholar
  16. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1978)Google Scholar
  17. Deamer, D.: First life, and next life. synthetic biology is a new field, but it’s centered on an old question: how did life begin? Technol. Rev. 112(3), 66–73 (2009)Google Scholar
  18. de Duve, C.: Clues from present-day biology: the tioester world. In: Brack, A. (ed.) The Molecular Origins of Life, pp. 219–236. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  19. Degtyarenko, K.: Structural domains of P450-containing monooxygenase systems. Protein Eng. 8(8), 737–747 (1995)CrossRefGoogle Scholar
  20. Dennett, D.C.: Darwin’s Dangerous Idea, Evolution and the Meanings of the Life, p. 62. Penguin Books, London (1995)Google Scholar
  21. Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 30, 177–182 (2006)CrossRefGoogle Scholar
  22. Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K.: Beyond the second law: entropy production and non-equilibrium systems. Springer, Berlin (2014)CrossRefGoogle Scholar
  23. Dobovišek, A., Županović, P., Brumen, M., Bonaćić-Lošić, Ž., Kuić, D., Juretić, D.: Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)CrossRefGoogle Scholar
  24. Dobovišek, A., Županović, P., Brumen, M., Juretić, D.: Maximum entropy production and maximum Shannon entropy as germane principles for the evolution of enzyme kinetics. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the second law: entropy production and non-equilibrium systems, pp. 361–382. Springer, Berlin (2014)CrossRefGoogle Scholar
  25. Ducluzeau, A.L., Schoepp-Cothenet, B., van Lis, R., Baymann, F., Russell, M.J., Nitschke, W.: The evolution of respiratory O2/NO reductases: an out-of-the-phylogeneticbox perspective. J. R. Soc. Interface 11, 20140196 (2014). doi: 10.1098/rsif.2014.0196 CrossRefGoogle Scholar
  26. Egel, R.: On the misgivings of anthropomorphic consensus polling in defining the complexity of life. J. Biomol. Struct. Dyn. 29(4), 615–616 (2012)CrossRefGoogle Scholar
  27. Eschenmoser, A.: Vitamin B12: experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. Engl. 27(1), 5–39 (1988)CrossRefGoogle Scholar
  28. Fox, G.E.: Origin and evolution of the ribosome. Cold Spring Harbor Perspect. Biol. (2010). doi: 10.1101/cshperspect.a003483 Google Scholar
  29. Gallo, V., Stano, P., Luisi, P.L.: Protein synthesis in sub-micrometer water-in-oil droplets. ChemBioChem 16, 2073–2079 (2015). doi: 10.1002/cbic.201500274 CrossRefGoogle Scholar
  30. Gardner, P.P., Fasold, M., Burge, S.W., Ninova, M., Hertel, J., Kehr, S., Steeves, T.E., Griffiths-Jones, S., Stadler, P.F.: Conservation and losses of non-coding RNAs in avian genomes. PLoS One 10(3), e0121797 (2015). doi: 10.1371/journal.pone.01217972015 CrossRefGoogle Scholar
  31. Gevers, W., Kleinkauf, H., Lipmann, F.: Peptdyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. USA. 63, 1335–1342 (1969)CrossRefGoogle Scholar
  32. Goodwin, J.T., Mehta, A.K., Lynn, D.G.: Digital and analog chemical evolution. Acc. Chem. Res. 45(12), 2189–2199 (2012). doi: 10.1021/ar300214w CrossRefGoogle Scholar
  33. Goodwin, J.T., Lynn, D.G., Burrows, C., Walker, S., Amin, S. and Armbrust, E.V. Alternative chemistries of life, empirical approaches. In: Goodwin, J.T. and Lynn, D.G. (eds.) A report from a workshop on alternative chemistries of life: empirical approaches. http://alternativechemistries.emory.edu/report_summary/index.html (2014) Accessed 24 Oct 2014
  34. Gordon-Smith, C. Non-template molecules designed for open-ended evolution. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgin, P., Dorigo, M. and Doursat, R. (eds.) Advances in artificial life ECAL 2011, Proceedings of the eleventh european conference on the synthesis and simulation of living systems, pp. 268–275. Massachusetts Institute of Technology USA (2011)Google Scholar
  35. Groves, J.T.: The importance to be selective. Nature 389, 329–330 (1997)CrossRefGoogle Scholar
  36. Hall, D.O., Cammack, R., Rao, K.K.: Role for ferredoxins in the origin of life and biological evolution. Nature 233, 136–138 (1971)CrossRefGoogle Scholar
  37. Hall, P.F.: Cytochromes P450 and the regulation of steroid synthesis. Steroids 48, 131–196 (1986)CrossRefGoogle Scholar
  38. Herrmann Pillath, C. Revisiting the gaia hypothesis: maximum entropy, Kauffmans fourth law and physiosemeiosis. Frankfurt School working paper series 160, Frankfurt am Main: Frankfurt School of Finance and Management (2011)Google Scholar
  39. Higgs, P.G., Lehman, N.: The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. AOP (2014). doi: 10.1038/nrg3841 Google Scholar
  40. Hodgson, G.W., Ponnamperuma, C.: Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia and water vapor. Proc. Natl. Acad. Sci. USA. 59, 22–28 (1968). doi: 10.1073/pnas.59.1.22 CrossRefGoogle Scholar
  41. Hordijk, W., Steel, M., Kauffman, S.: The structure of autocatalytic sets: evolvability, enablement, and emergence. Acta Biotheor. 60, 379–392 (2012). doi: 10.1007/s10441-012-9165-1 CrossRefGoogle Scholar
  42. Hsiao, C., Mohan, S., Kalahar, B.K., Williams, L.D.: Peeling the onion: ribosomes are ancient molecular fossils. Mol. Biol. Evol. 26(11), 2415–2425 (2009). doi: 10.1093/molbev/msp163 CrossRefGoogle Scholar
  43. Hsiao, C., Williams, L.D.: A recurrent magnesium-binding motif provides a framework for ribosomal peptidyl transferase center. Nucl. Acids Res. 37(10), 3134–3142 (2009). doi: 10.1093/nar/gkp119 CrossRefGoogle Scholar
  44. Ivica, N.A., Obermayer, B., Campbell, G.W., Rajamani, S., Gerland, U., Chen, I.A.: The paradox of dual roles in the RNA world: resolving the conflict between stable folding and templating ability. J. Mol. Evol. (2013). doi: 10.1007/s00239-013-9584-x Google Scholar
  45. Jadhav, V.R., Yarus, M.: Coenzymes as coribozymes. Biochimie 84, 877–888 (2002)CrossRefGoogle Scholar
  46. Jahn, D., Moser, J., Schubert, W.D., Heinz, D.W.: Transfer RNA-dependent aminolevulinic acid formation: structure and function of glutamyl-trna synthetase, reductase and glutamate-1-semialdehyde-2,1-aminomutase. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds.) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, pp. 159–171. Springer, Berlin (2006)CrossRefGoogle Scholar
  47. Jeffares, D.C., Poole, A.M., Penny, D.: Relics from the RNA world. J. Mol. Evol. 46(1), 18–26 (1998). doi: 10.1007/PL00006280. (PMID: 9419222)CrossRefGoogle Scholar
  48. Johnson, D.B.F., Wang, L.: Imprints of the genetic code in the ribosome. PNAS 107(18), 8298–8303 (2010). doi: 10.1073/pnas.1000704107 CrossRefGoogle Scholar
  49. Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefGoogle Scholar
  50. Kappler, A., Emerson, D., Gralnick, J.A., Roden, E.E., Muehe, E.M.: Geomicrobiology of iron. In: Ehrlich, H.L., Newman, D.K., Kappler, A. (eds.) Geomicrobiology, 6th edn. CRC Press, Boca Raton (2015)Google Scholar
  51. Kelly, S.L., Kelly, D.E.: Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Phil. Trans. R. Soc. B. 368, 20120476 (2013). doi: 10.1098/rstb.2012.0476 CrossRefGoogle Scholar
  52. Kleidon, A.: Life, hierarchy, and the thermodynamic machinery of planet earth. Phys. Life Rev. 7, 424–460 (2010)CrossRefGoogle Scholar
  53. Kleinkauf, H., von Dören, H.: Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem. 192, 1–15 (1990)CrossRefGoogle Scholar
  54. Kleinkauf, H., von Dören, H.: A nonribosomal system of peptide biosynthesis. Eur. J. Biochem. 236, 335–351 (1996)CrossRefGoogle Scholar
  55. Knight, R. Reviewers’ comments: Wolf, Y.I. and Koonin, E.V. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, and subfunctionalization. Biol. Dir. 2, 14 (2007)Google Scholar
  56. Kurland, C.G.: The RNA dreamtime. BioEssays 32, 866–871 (2010)CrossRefGoogle Scholar
  57. Lane, N., Martin, W.F.: The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012). doi: 10.1016/j.cell.2012.11.050 CrossRefGoogle Scholar
  58. Laubichler, M.D., Stadler, P.F., Prohaska, S.J., Nowick, K.: The relativity of biological function. Theo. Biosci. (2015). doi: 10.1007/s12064-015-0215-5 Google Scholar
  59. Lewis, D.F.V., Watson, E., Lake, B.G.: Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat. Res. 410, 245–270 (1998)CrossRefGoogle Scholar
  60. Luisi, P.L., Stano, P., de Souza, T.: Spontaneous overcrowding in liposomes as possible origin of metabolism. Orig. Life Evol. Biosph. (2015). doi: 10.1007/s11084-014-9387-0 Google Scholar
  61. Lynn, D., Burrows, C., Goodwin, J., Mehta, A.: Origins of chemical evolution. Acc. Chem. Res. 45(12), 2023–2024 (2012)CrossRefGoogle Scholar
  62. Martin, W., Russell, M.J.: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B 358, 59–85 (2003). doi: 10.1098/rstb.2002.1183 CrossRefGoogle Scholar
  63. Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)CrossRefGoogle Scholar
  64. Martyushev, L.M.: The maximum entropy production principle: two basic questions. Phil. Trans. R. Soc. B 365, 1333–1334 (2010)CrossRefGoogle Scholar
  65. Martjushev, L.M.: Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15, 1152–1170 (2013)CrossRefGoogle Scholar
  66. Martyushev, L.M., Seleznev, V.D.: The restrictions of the maximum entropy production principle. Phys. A 410, 17–21 (2014)CrossRefGoogle Scholar
  67. Maynard Smith, J., Szathmáry, E.: The Major Evolutionary Transitions, pp. 3–8. W.H. Freeman Spectrum, Oxford (1995)Google Scholar
  68. Melton, D.E., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A.: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014)CrossRefGoogle Scholar
  69. Michaelian, K. and Simeonov, A. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum. Biogeosciences 12, 4913–4937 (2015) www.biogeosciences.net/12/4913/2015/. doi:  10.5194/bg-12-4913-2015
  70. Milner-White, E.J., Russell, M.J.: Predicting peptide and protein conformations in early evolution. Biol. Dir. 3, 3 (2008). doi: 10.1186/1745-6150-3-3 CrossRefGoogle Scholar
  71. Milner-White, E.J., Russell, M.J.: Functional capabilities of the earliest peptides and the emergence of life. Genes 2, 671–688 (2011). doi: 10.3390/genes2040671 CrossRefGoogle Scholar
  72. Montanini, B., Yang Chen, P., Morselli, M., Jaroszewicz, A., Lopez, D., Martin, F. Ottonello, S., and Pellegrini, M. Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol. 15, 411 (2014). http://genomebiology.com/2014/15/7/411
  73. Murphy, M.P., O’Neill, L.A.J.: What is Life? The next fifty years. An introduction. In: Murphy, M.P., O’ Neill, L.A.J. (eds.) What is Life? The next fifty years, pp. 1–4. Cambridge University Press, Cambridge (1997)Google Scholar
  74. Mushegian, A.: Gene content of LUCA, the last universal common ancestor. Front. Biosci. 13, 4657–4666 (2008)CrossRefGoogle Scholar
  75. Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C., Gotoh, O., Okuda, K., Nebert, D.W.: The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 12, 1–51 (1993)CrossRefGoogle Scholar
  76. Nelson, D.R., Goldstone, J.V., Stegeman, J.J.: The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Phil. Trans. R. Soc. B. 368, 20120474 (2013). doi: 10.1098/rstb.2012.0474 CrossRefGoogle Scholar
  77. Nitschke, W., McGlynn, S.E., Milner-White, E.J., Russell, M.J.: On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta 1827, 871–881 (2013). doi: 10.1016/j.bbabio.2013.02.008 CrossRefGoogle Scholar
  78. Oda, A., Fukuyoshi, S.: Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine. Orig. Life Evol. Biosph. 45, 183–193 (2015). doi: 10.1007/s11084-015-9418-5 CrossRefGoogle Scholar
  79. Olson, M.V.: Molecular evolution ‘when less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64, 18–23 (1999)CrossRefGoogle Scholar
  80. Petrov, A.S., Bernier, C.R., Hsiao, C., Norris, A.M., Kovacs, N.A., Waterbury, C.C., Stepanov, V.G., Harvey, S.C., Fox, G.E., Wartell, R.M., Hud, N.V., Williams, L.D.: Evolution of the ribosome at atomic resolution. PNAS 111(28), 10251–10256 (2014). doi: 10.1073/pnas.1407205111 CrossRefGoogle Scholar
  81. Pressman, A., Blanco, C., Chen, I.A.: The RNA world as a model system to study the origin of life. Curr. Biol. 25, R953–R963 (2015)CrossRefGoogle Scholar
  82. Pross, A.: Causation and the origin of life. Metabolism or replication first? Orig. Life Evol. Biosph. 34, 307–321 (2004)CrossRefGoogle Scholar
  83. Qian, H.: Open-system nonequilibrium steady-state: statistical thermodynamics, fluctuations and chemical oscillations. J. Phys. Chem. B 110(15063–15074), 1021 (2006). doi: 10.1021/jp061858z Google Scholar
  84. Qian, H.: Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007). doi: 10.1146/annurev.physchem.58.032806.104550 CrossRefGoogle Scholar
  85. Raffaelli, N.: Nicotinamide coenzyme synthesis: a case of ribonucleotide emergence or a byproduct of the RNA world? In: Egel, R. (ed.) Origins of life: the primal self-organization editor, pp. 185–208. Springer, Berlin (2011)CrossRefGoogle Scholar
  86. Rojas-Benitez, D., Thiaville, P.C., Crécy-Lagard, V.C., Glavic, A.: The levels of a universally conserved tRNA modification regulate cell growth. J. Biol. Chem. 290(30), 18699–18707 (2015)CrossRefGoogle Scholar
  87. Root-Bernstein, M., Root-Bernstein, R.: The ribosome as a missing link in the evolution of life. J. Theor. Biol. 367, 130–158 (2015)CrossRefGoogle Scholar
  88. Russell, M.J., Daniel, R.M., Hall, A.J., Sherringham, J.: A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231–243 (1994)CrossRefGoogle Scholar
  89. Russell, M.J., Hall, A.J.: The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377–402 (1997)CrossRefGoogle Scholar
  90. Russell, M.J., Nitschke, W., Branscomb, E.: The inevitable journey to being. Phil. Trans. R. Soc. B 368, 20120254 (2013). doi: 10.1098/rstb.2012.0254 CrossRefGoogle Scholar
  91. Scharf, C., Virgo, N., Cleaves II, J., Aono, M., Aubert-Kato, N., Aydinoglu, A., Barahona, A., Barge, L.M., Benner, S.A., Biehl, M., Brasser, R., Butch, C.J., Chandru, K., Cronin, L., Danielache, S., Fischer, J., Hernlund, J., Hut, P., Ikegami, T., Kimura, J., Kobayashi, K., Mariscal, C., Mc Glynn, S., Menard, B., Packard, N., Pascal, R., Pereto, J., Rajamani, S., Sinapyen, L., Smith, E., Switzer, C., Takai, K., Tian, F., Ueno, Y., Voytek, M., Witkowski, O., Yabuta, H.: A strategy for origins of life research. Astrobiology 15(12), 1031–1042 (2015). doi: 10.1089/ast.2015.1113 CrossRefGoogle Scholar
  92. Schimmel, P.: Development of tRNA synthetases and connection to genetic code and disease. Protein Sci. 17, 1643–1652 (2008)CrossRefGoogle Scholar
  93. Shapiro, J.A.: The basic concept of the read-write genome: mini-review on cell-mediated DNA modification. Biosystems 140, 35–37 (2016). doi: 10.1016/j.biosystems.2015.11.003 CrossRefGoogle Scholar
  94. Shapiro, R.: A replicator was not involved in the origin of life. IUBMB Life 49, 173–176 (2000)CrossRefGoogle Scholar
  95. Shapiro, R.: A simpler origin for life. Sci. Am. 296(6), 46–53 (2007)CrossRefGoogle Scholar
  96. Sharov, A.A.: Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int. J. Mol. Sci. 10, 1838–1852 (2009). doi: 10.3390/ijms10041838 CrossRefGoogle Scholar
  97. Sharov, A.A.: Coenzyme world model of the origin of life. BioSystems 144, 8–17 (2016)CrossRefGoogle Scholar
  98. Simionescu, C.I., Simionescu, B.C., Mora, R., Leancâ, M.: Porphyrin-like compounds genesis under simulated abiotic conditions. Orig. Life 9, 103–114 (1978). doi: 10.1007/BF00931408 CrossRefGoogle Scholar
  99. Smith, J.E., Mowles, A.K., Mehta, A.K., Lynn, D.G.: Looked at life from both sides now. Life 4, 887–902 (2014). doi: 10.3390/life4040887 CrossRefGoogle Scholar
  100. Sousa, F.L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I.A., Allen, J.F., Lane, N., Martin, W.F.: Early bioenergetic evolution. Phil. Trans. R. Soc. B 368, 20130088 (2013). doi: 10.1098/rstb.2013.0088 CrossRefGoogle Scholar
  101. Sousa, F.L., Hordijk, W., Steel, M., Martin, W.F.: Autocatalytic sets in E. coli metabolism. J. Syst. Chem. 6, 4 (2015). doi: 10.1186/s13322-015-0009-7 CrossRefGoogle Scholar
  102. Stryer, L.: Biochemistry, 3rd edn, p. 409. W.H. Freeman and Co., New York (1988a)Google Scholar
  103. Stryer, L.: Biochemistry, 3rd edn, p. 323. W.H. Freeman and Co., New York (1988b)Google Scholar
  104. Su, F., Takaya, N., Shoun, H.: Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor. Biosci. Biotechnol. Biochem. 68(2), 473–475 (2004)CrossRefGoogle Scholar
  105. Szathmáry, E., Maynard Smith, J.: The major evolutionary transitions. Nature 374, 227–232 (1995)CrossRefGoogle Scholar
  106. Szathmáry, E.: Toward major evolutionary transitions theory 2.0. PNAS Early Ed. (2015). doi: 10.1073/pnas.1421398112 Google Scholar
  107. Tessera, M.: Origin of evolution versus origin of life: a shift of paradigm. Int. J. Mol. Sci. 12, 3445–3458 (2011). doi: 10.3390/ijms12063445 CrossRefGoogle Scholar
  108. Tessera, M.: Is A n+1 definition of life useful? J. Biomol. Struct. Dyn. 29(4), 635–636 (2012)CrossRefGoogle Scholar
  109. Toporkova, Y.Y., Mukhtarova, L.S., Gogolev, Y.V., Grechkin, A.N.: Origins of the diversity of cytochrome P450 CYP74 family based on the results of site-directed mutagenesis. Mosc. Univ. Biol. Sci. Bull. 65(4), 155–157 (2010)CrossRefGoogle Scholar
  110. Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface 6, 925–940 (2009)CrossRefGoogle Scholar
  111. Villarreal, L.P., Witzany, G.: When competing viruses unify: evolution, conservation, and plasticity of genetic identities. J. Mol. Evol. (2015). doi: 10.1007/s00239-015-9683-y Google Scholar
  112. Vitas, M. On the Theory of species evolution through natural selection; Original Title: O teoriji razvoja vrst a pomočjo naravne selekcije. Apokalipsa: revija za preboj v živo kulturo 152, 113–122 (2011) http://www.dlib.si/?URN=URN:NBN:SI:DOC-UY4WVSCK
  113. Vitas, M., Dobovišek, A.: Evolution, transposition, transformation and flow of information. Anali Pazu 4(2), 66–74 (2014)Google Scholar
  114. Wächtershäuser, G.: Origin of life in an iron–sulfur world. In: Brack, A. (ed.) The Molecular Origins of Life, 6th edn, pp. 206–218. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  115. Wächtershäuser, G.: From volcanic origins of chemoautotrophic life to bacteria, archaea and eukarya. Phil. Trans. R. Soc. B 361, 1787–1808 (2006). doi: 10.1098/rstb.2006.1904 CrossRefGoogle Scholar
  116. Walker, S.I., Kim, H., Davies, P.C.W.: The informational architecture of the cell. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. (2015). doi: 10.1098/rsta.2015.0057 Google Scholar
  117. Wang, J., Dasgupta, I., Fox, G.E.: Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters. Archaea 2(4), 241–251 (2009)CrossRefGoogle Scholar
  118. Wickramashighe, R.H., Villee, C.A.: Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature 256, 509–510 (1975). doi: 10.1038/256509a0 CrossRefGoogle Scholar
  119. Woehle, C., Kusdian, G., Radine, C., Graur, D., Landan, G. and Gould, S.B. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genom. 15, 906 (2014) http://www.biomedcentral.com/1471-2164/15/906
  120. Woese, C.: A new biology for a new century. Microbiol. Mol. Biol. Rev. 68, 173–186 (2004)CrossRefGoogle Scholar
  121. Wolf, Y.I., Koonin, E.V.: On the origin of the translation system and the genetic code in the RNA world by means of natural selection, and subfunctionalization. Biol. Dir. 2, 14 (2007)CrossRefGoogle Scholar
  122. Xiong, Y., Eickbush, T.H.: Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO J. 9(10), 3353–3362 (1990)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.BorovnicaSlovenia
  2. 2.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations